Supporting Text

General

All reactions were carried out under Ar in flame-dried glassware. The solvents used were purified by distillation over the drying agents indicated and were transferred under Ar : THF, $\mathrm{Et}_{2} \mathrm{O}(\mathrm{Mg}-$ anthracene), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{P}_{4} \mathrm{O}_{10}\right)$, $\mathrm{MeCN}, \mathrm{Et}_{3} \mathrm{~N}\left(\mathrm{CaH}_{2}\right), \mathrm{MeOH}(\mathrm{Mg})$, DMF, DMA (Desmodur, dibutyltin dilaurate), hexane, toluene $(\mathrm{Na} / \mathrm{K})$.

Flash Chromatography. Merck silica gel 60 (230-400 mesh). IR: Nicolet FT-7199 spectrometer, wavenumbers (\widetilde{v}) in cm^{-1}. MS (EI): Finnigan MAT $8200(70 \mathrm{eV})$, ESI-MS: Finnigan MAT 95, accurate mass determinations: Bruker APEX III FT-MS (7 T magnet). Melting points: Gallenkamp melting point apparatus (uncorrected). Elemental analyses: H. Kolbe, Mülheim/Ruhr. Unless stated otherwise, all commercially available compounds (Fluka, Lancaster, Aldrich) were used as received. NMR: Spectra were recorded on a Bruker DPX 300, AV 400, or DMX 600 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{C}} \equiv 77.0 \mathrm{ppm}\right.$; residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}$ $\equiv 7.24 \mathrm{ppm} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{C}} \equiv 53.8 \mathrm{ppm}$; residual $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{H}} \equiv 5.32 \mathrm{ppm}$). Where indicated, the signal assignments are unambiguous; the numbering scheme is arbitrary and is shown in the inserts. The assignments are based upon 1D and 2D spectra recorded using the following pulse sequences from the Bruker standard pulse program library: DEPT; COSY (cosygs and cosydqtp); HSQC (invietgssi) optimized for ${ }^{1} \mathrm{~J}(\mathrm{C}, \mathrm{H})=145 \mathrm{~Hz} ; \mathrm{HMBC}$ (inv4gslplrnd) for correlations via ${ }^{\mathrm{n}} J(\mathrm{C}, \mathrm{H})$; HSQC-TOCSY (invietgsml) using an MLEV17 mixing time of 120 ms .

Bioassay. Murine NIH/3T3 fibroblasts (CRL-1658 from American Type Culture Collection) were cultured at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ in Dulbecco's modified Eagle's medium supplemented with 4 mM L-glutamine, $4.5 \mathrm{~g} /$ liter glucose, and 10% bovine calf serum. Cells $\left(2 \times 10^{4}\right)$ were seeded on coverslips in one well of a 24 -well plate. After adapting and attaching overnight the cells were incubated with 1,5 , or $10 \mu \mathrm{M}$ of the corresponding compound for 18 h . Before and after each fixation or staining step, the cells were washed three times with TPBS (0.2% Tween 20 in
phosphate-buffered saline). Cells were fixed with 3.7% formalin in PBS. For blocking unspecific epitopes, fixed cells were incubated with 1% powdered milk in PBS. Actin filaments were stained for 1 h with a solution of 77 nM TRITC-labeled phalloidin (P1951 from Sigma) in TPBS. Cell nuclei were stained with DAPI [2-(4-amidinophenyl)-6-indolecarbamidine dihydrochloride; D9542 from Sigma]. Cells were visualized and photographed at a Zeiss Axiophot fluorescence microscope.

Carboxylic Acid Building Blocks

Acids 23 (1) and 26 (2) were prepared by following the literature routes.

Analogues:

Scheme 4. a) $\mathrm{LiCl}, \mathrm{HOAc}, \mathrm{MeCN}$, reflux, 60%; b) $\mathrm{Fe}(\mathrm{acac})_{3}$ cat., THF, $-30^{\circ} \mathrm{C}, 78 \%$; c) NaOH , MeOH, 74\%.

Ethyl (Z)-3-chloro-2-propenoate (39). See ref. 3. A mixture of ethyl propiolate 38 (2 g, 20.4 $\mathrm{mmol}, 2.04 \mathrm{ml})$, dry lithium chloride $(0.95 \mathrm{~g})$ and acetic acid (1.3 ml) in $\mathrm{MeCN}(25 \mathrm{ml})$ was refluxed for 18 h . The reaction was allowed to cool and water added (100 ml). Solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added until no further CO_{2} evolution occurred. The organic layer was separated and the aqueous phase extracted with MTBE $(3 \times 100 \mathrm{ml})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Purification of the residue by flash chromatography gave 39 as a colorless liquid $(1.66 \mathrm{~g}, 60 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.32(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 4.25(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz})$, $6.20(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.71(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 163.4, 132.3,
121.5, 60.7, 14.2; MS (EI) m/z (rel. intensity): 106 (9), 99 (42), 91 (34), 89 (100), 61 (20), 45 (14); HRMS (CI) $m / z 135.0210(M+H)^{+}$; calcd. for $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{ClO}_{2}$: 135.0212.

Ethyl (Z)-2-octen-6-ynoate (41). Magnesium turnings ($433 \mathrm{mg}, 17.8 \mathrm{mmol}$) were stirred with I_{2} for 1 h . THF (2 ml) was added and a solution of 5-pentynyl bromide ($2.3 \mathrm{~g}, 16.0 \mathrm{mmol}$) in THF $(17 \mathrm{ml})$ was added dropwise to maintain a constant reflux. After complete addition, the mixture was refluxed for 1.5 h before allowing to cool. The solution of the Grignard reagent 40 thus formed was quickly added in one portion to a solution of chloride $39(1 \mathrm{~g}, 7.4 \mathrm{mmol})$ and $\mathrm{Fe}(\mathrm{acac})_{3}(565 \mathrm{mg}, 10 \mathrm{~mol} \%)$ in THF $(15 \mathrm{ml})$ at $-30^{\circ} \mathrm{C}$. After 10 min the reaction was allowed to warm to room temperature before quenching with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layers were separated and the aqueous phase was extracted with MTBE. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent was evaporated and the residue purified by flash chromatography (20:1 hexane:EtOAc) to give 41 as a volatile light yellow oil (964 mg , 78\%). IR (ATR) 2981, $2920,1716,1646,1445,1414,1388,1332,1283,1216,1188,1163,1096,1030,821 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.28(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.77(\mathrm{t}, 3 \mathrm{H}, J=2.5 \mathrm{~Hz}), 2.27(\mathrm{~m}, 2 \mathrm{H}), 2.82$ (dd, 2H, $J=7.2,1.7 \mathrm{~Hz}), 4.16(\mathrm{q}, 2 \mathrm{H} J=7.1 \mathrm{~Hz}), 5.81(\mathrm{ddd}, 1 \mathrm{H} J=1.7,1.7,11.4 \mathrm{~Hz}), 6.32(\mathrm{dd}$, $1 \mathrm{H} J=7.2,11.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.5,14.3,18.4,28.4,59.9,76.4,78.0$, 120.7, 148.3, 166.3; HRMS (CI, iso-butane): calcd. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right)$: 167.1072; found 167.1073.
(Z)-2-Octen-6-ynoic acid (24). To a stirred solution of ester 41 (773 mg, 4.65 mmol$)$ in MeOH $(10 \mathrm{ml})$ was added an aq. 1 M solution of $\mathrm{NaOH}(12.4 \mathrm{ml}, 12.4 \mathrm{mmol})$. The reaction was allowed to stir overnight before removal of the methanol under vacuum. The aqueous layer was washed with MTBE and the organic phases were discarded. The aqueous layer was acidified to pH 1 with 2 M HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated and the residue was purified by Kugelrohr distillation to give 24 as a colorless liquid (571 mg, 74\%). IR (ATR) 2970, 2921, 1737, 1695, 1432, 1366, 1287, 1231, 1217, 1204, 1110, $924,826,722 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.77(\mathrm{t}, 3 \mathrm{H}, J=2.5 \mathrm{~Hz}$), 2.23-2.32(m,2H), $2.82(\mathrm{dd}, 2 \mathrm{H}, J=7.1,1.7 \mathrm{~Hz}), 5.84(\mathrm{ddd}, 1 \mathrm{H}, J=11.5,1.6,1.6 \mathrm{~Hz}), 6.44(\mathrm{ddd}, 1 \mathrm{H}, J=11.5,7.1$,
7.1 Hz), $11.5(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.5,18.4,28.7,76.7,77.7,120.0,151.3$, 171.8; HRMS (CI, iso-butane): calcd. for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right)$: 139.0759; found 139.0760.

6-Octynoic Acid (25). A mixture of 6-octynol ($500 \mathrm{mg}, 3.96 \mathrm{mmol}$), TEMPO ($43 \mathrm{mg}, 0.28$ mmol), sodium chlorite ($900 \mathrm{mg}, 80 \%, 7.92 \mathrm{mmol}$), acetonitrile (20 ml), and phosphate buffer ($15 \mathrm{ml}, 0.67 \mathrm{M}, \mathrm{pH}=6.7$) was heated to $35^{\circ} \mathrm{C}$ before dilute bleach $(50 \mathrm{mg}, 12 \% \mathrm{NaOCl}$ diluted in 2 ml water, $2 \mathrm{~mol} \%$) was added. After stirring for 4 d at $35^{\circ} \mathrm{C}$ the conversion was complete as checked by GC-MS and the reaction mixture was cooled to room temperature. After diluting with water (30 ml), the pH was adjusted to ≈ 9.0 with 1 M NaOH and the resulting mixture was poured into a cold $\left(0^{\circ} \mathrm{C}\right) \mathrm{Na}_{2} \mathrm{SO}_{3}$ solution (1.2 g in 20 ml of water). After stirring for 0.5 h at room temperature, the mixture was diluted with MTBE, the organic layer was separated and discarded. The aqueous layer was then acidified with 3 M HCl to pH 1 and extracted three times with MTBE. The combined organic layers were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to yield white crystals. Purification of the residue by flash chromatography (ethyl acetate/hexane, 1/6) afforded acid 25 as a white solid ($340 \mathrm{mg}, 62 \%$ yield). IR (film) 3037, 2945, 1706, 1458, 1415, 1313, $937 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.49-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.76$ $(\mathrm{m}, 2 \mathrm{H}), 1.77(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=2.6 \mathrm{~Hz}), 2.13-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 11.68(\mathrm{bs}, 1 \mathrm{H}$, $\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.4,18.4,23.8,28.3,33.6,76.0,78.5,180.2$; MS (EI) m / z (rel. intensity) 140 (19), 94 (46), 81 (100), $67(35), 53(53)$. HRMS: $\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}\right)$ calcd.: 140.083730 , found: 140.083832 .

8-Decynoic Acid (27). Prepared analogously from 8-decynol (279 mg, 51\%). IR (neat): 32002500 (br), 2936, 2849, 1691, $933 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.36(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.44-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{qt}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.36(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.4(\mathrm{C}), 78.7(\mathrm{C}), 75.1(\mathrm{C}), 33.6\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right)$, $24.2\left(\mathrm{CH}_{2}\right), 18.3\left(\mathrm{CH}_{2}\right), 3.0\left(\mathrm{CH}_{3}\right)$; MS (EI) m/z (rel. intensity) 150 (2), 108 (14), 93 (17), 81 (23), 68 (100). HRMS $\left(\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{2}\right)$: calcd. for $\left(\mathrm{M}^{+}+\mathrm{H}\right)$: 169.1229; found 169.1230.

Ketone Building Blocks

Ketone 8 and its 16-epimer 15 were prepared by the route outlined in ref. 1.

The preparation of the analogous oxygen containing heterocycle 16 is depicted in Scheme 5 ; the preparation of the antipode $\mathbf{1 7}$ followed the same route using the epimeric serine ester as the starting material.

Scheme 5. a) triphosgene, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, quant.; b) $\mathrm{NaH}, \mathrm{PMBBr}, \mathrm{THF},-15^{\circ} \mathrm{C}, 56 \%$; c) aq. $\mathrm{KOH}, 1,4$-dioxane, 97%; d) $\mathrm{MeONH}(\mathrm{Me}) \cdot \mathrm{HCl}, \mathrm{BOP}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, quant.; e) MeMgBr , THF, $-40^{\circ} \mathrm{C}, 96 \%$, ee $=97 \%$ (after recrystallization from MTBE).

Methyl (4S)-2-oxo-1,3-oxazolidine-4-carboxylate (43). See ref. 4. To a stirred suspension of serine methyl ester hydrochloride $42(5 \mathrm{~g}, 32.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added triethylamine ($13.4 \mathrm{ml}, 96.3 \mathrm{mmol}$) over 5 min . The reaction was stirred for 10 min before a solution of triphosgene $(3.2 \mathrm{~g}, 10.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ was added dropwise over 2 h . The reaction was stirred for 30 min , diluted with $\mathrm{Et}_{2} \mathrm{O}(75 \mathrm{ml})$ and cooled to $-78^{\circ} \mathrm{C}$ to precipitate all $\mathrm{Et}_{3} \mathrm{NHCl}$ salts. The mixture was filtered and then concentrated to approx. 10 ml when it was applied carefully to a 2.5 cm depth column of silica (prepacked EtOAc) in a 100 ml sinter funnel. The solution was washed through the column with EtOAc (300 ml) and concentrated to give $\mathbf{4 3}$
as a colorless oil in quantitative yield (4.65 g). $[\alpha]_{D}^{20}=-2.0(c 0.62$, EtOH); IR (ATR) 3296, 2959, $1732,1480,1438,1399,1366,1213,1115,1056,1007,954,920,825,766 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.43(\mathrm{dd}, 1 \mathrm{H}, J=9.5,4.5 \mathrm{~Hz}), 4.57(\mathrm{dd}, 1 \mathrm{H}, J=8.9,4.5 \mathrm{~Hz}), 4.60$ $(\mathrm{d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 6.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 53.2,53.8,66.8,159.1,170.6 ;$ MS (EI) m / z (rel. intensity): 145 (7), 86 (100) 58 (11), 42 (55); HRMS (EI) $m / z 145.0372$ (M) ${ }^{+}$; calcd. for $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{4}$: 145.0375 .

Methyl (4S)-3-(4-methoxybenzyl)-2-oxo-1,3-oxazolidine-4-carboxylate (44). To a slurry of $\mathrm{NaH}(0.61 \mathrm{~g}, 25.3 \mathrm{mmol})$ in THF $(50 \mathrm{ml})$ at $-15^{\circ} \mathrm{C}$ was added a solution of $43(3.5 \mathrm{~g}, 24.1 \mathrm{mmol})$ in THF (30 ml). The reaction was allowed to stir for 3 h before a solution of $\operatorname{PMBBr}(8.5 \mathrm{~g}, 42$ $\mathrm{mmol})$ in THF (20 ml) was added dropwise. The reaction was stirred for 16 h , quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{ml})$ and the aqueous phase extracted with MTBE $(2 \times 40 \mathrm{ml})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to a colorless oil. Purification by flash chromatography ($3: 1$, hexane: EtOAc) gave 44 as a white solid ($3.57 \mathrm{~g}, 56 \%$). $\mathrm{mp} 65-67^{\circ} \mathrm{C}$; $[\alpha]_{D}^{20}=-25.0(c 0.45, \mathrm{EtOH}) ;$ IR (ATR) 2973, 2959, 1732, 1613, 1585, 1515, 1466, 1435, 1415, $1364,1316,1302,1285,1245,1209,1174,1113,1086,1048,1025,1009,980,966,946,921$, $870,837,828,814,756,744,715,671 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 4.09(\mathrm{dd}, 1 \mathrm{H}, J=9.4,5.1 \mathrm{~Hz}), 4.18(\mathrm{~d}, 1 \mathrm{H}, J=14.7 \mathrm{~Hz}), 4.32(\mathrm{dd}, 1 \mathrm{H}, J=9.0,5.1 \mathrm{~Hz})$, $4.38(\mathrm{dd}, 1 \mathrm{H}, J=9.4,9.0 \mathrm{~Hz}), 4.84(\mathrm{~d}, 1 \mathrm{H}, J=14.7 \mathrm{~Hz}), 6.87(\mathrm{app} . \mathrm{d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.19(\mathrm{app}$. d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 46.8,52.9,55.4,55.9,64.4,114.3,127.1$, 130.0, 157.6, 159.6, 170.0; MS (EI) m/z (rel. intensity): 265 (28), 179 (30), 162 (14), 135 (16), 134 (37), 121 (100), 78 (11); HRMS (EI) $m / z 265.0952(M)^{+}$; calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{5}: 265.0950$.
(4S)-3-(4-Methoxybenzyl)-2-oxo-1,3-oxazolidine-4-carboxylic acid (45). To a solution of 44 ($3.38 \mathrm{~g}, 12.7 \mathrm{mmol}$) in 1,4-dioxane (50 ml) was added an aqueous KOH solution (2.15 g in 35 ml of $\mathrm{H}_{2} \mathrm{O}, 38 \mathrm{mmol}$). After 1 h the reaction was acidifed with 2 M HCl and diluted with MTBE $(200 \mathrm{ml})$. The aqueous layer was extracted with MTBE $(2 \times 100 \mathrm{ml})$, the combined organic phases were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to an oil. Repeated treatment of the oil with toluene/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2:1) followed by re-evaporation resulted in removal of residual
water and isolation of product 45 as a white solid ($3.1 \mathrm{~g}, 97 \%$). mp $116-118^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=-28.1(\mathrm{c}$ 1.0, EtOH); IR (film) 3440, 2958, 2934, 2838, 2722, 2611, 2509, 1743, 1689, 1612, 1587, 1514, $1470,1444,1419,1365,1294,1268,1248,1197,1179,1116,1101,1030,971,834,813,762$, $746,677 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz},[\mathrm{D}]_{6}$-DMSO) $\delta 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{~d}, 1 \mathrm{H}, J=15.1 \mathrm{~Hz}$), 4.14 $(\mathrm{dd}, 1 \mathrm{H}, J=9.4,4.4 \mathrm{~Hz}), 4.29(\mathrm{dd}, 1 \mathrm{H}, J=8.9,4.4 \mathrm{~Hz}), 4.47(\mathrm{t}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz}), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=$ 15.1 Hz), 6.93 (app. d, $2 \mathrm{H}, J=8.7 \mathrm{~Hz}$), 7.21 (app. d, $2 \mathrm{H}, J=8.7 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 45.8,55.1,55.8,64.5,114.0,127.7,129.4,157.3,158.8,171.3$; MS (EI) m/z (rel. intensity): 251 (58), 206 (5), 179 (81), 162 (15), 134 (94), 121 (100), 78 (16), 77 (15); HRMS (EI) $m / z 251.0794(\mathrm{M})^{+}$; calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{5}$: 251.0793.

(4S)- N -Methoxy-3-(4-methoxybenzyl)- N -methyl-2-oxo-1,3-oxazolidine-4-carboxamide (46).

To a solution of $45(1.0 \mathrm{~g}, 4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added BOP $(1.8 \mathrm{~g}, 4 \mathrm{mmol})$ shortly followed by $\mathrm{Et}_{3} \mathrm{~N}(0.58 \mathrm{ml}, 4.2 \mathrm{mmol})$. The reaction was stirred for 10 min before $\mathrm{N}, \mathrm{O}-$ dimethylhydroxylamine hydrochloride ($0.43 \mathrm{~g}, 4.4 \mathrm{mmol}$) was added along with another portion of $E t_{3} \mathrm{~N}(0.58 \mathrm{ml}, 4.2 \mathrm{mmol})$. The mixture was stirred overnight and was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$ and the combined organics were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was purified by flash chromatography (1:2,
hexane:EtOAc) to give 46 as a light yellow oil in quantitative yield (1.17 g). $[\alpha]_{D}^{20}=-4.5$ (c 0.37, EtOH); IR (film) 3478, 2941, 2839, 1755, 1673, 1612, 1586, 1514, 1443, 1419, 1376, 1323, 1304, 1249, 1210, 1178, 1116, 1083, 1034, 997, 960, 846, 762, $559 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.[\mathrm{D}]_{6}-\mathrm{DMSO}\right) \delta 3.12(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.9 \mathrm{~Hz}), 4.19(\mathrm{dd}, 1 \mathrm{H}, J$ $=6.6,2.2 \mathrm{~Hz}), 4.47-4.55(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=14.9 \mathrm{~Hz}), 6.93$ (app. d, 2H, $J=8.7 \mathrm{~Hz}), 7.21$ (app. d, 2H, $J=8.7 \mathrm{~Hz}$); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 32.0,45.7,53.9,54.9,61.2,64.2,113.9$, 127.6, 129.4, 157.6, 158.7, 169.0; MS (EI) m/z (rel. intensity): 294 (7), 263 (23), 162 (6), 121 (100), 78 (6), 55 (7); HRMS (ESI) $m / z 317.1112(\mathrm{M}+\mathrm{Na})^{+}$; calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{Na}$: 317.1113.
(4S)-4-Acetyl-3-(4-methoxybenzyl)-1,3-oxazolidin-2-one (16). To a solution of 46 ($2.4 \mathrm{~g}, 8.2$ $\mathrm{mmol})$ in THF $(25 \mathrm{ml})$ at $-40^{\circ} \mathrm{C}$ was added $\mathrm{MeMgBr}\left(2.9 \mathrm{ml}, 3 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 8.6 \mathrm{mmol}\right)$. The reaction was stirred at $-40^{\circ} \mathrm{C}$ for 1 h and then allowed to warm to $-20^{\circ} \mathrm{C}$ for 2 h . The reaction
was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the organic phase was separated and the aqueous layer extracted with EtOAc ($3 \times$), the combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated, and the residue was purified by flash chromatography ($1: 1$, hexane:EtOAc) to give $\mathbf{1 6}$ as a white solid ($1.95 \mathrm{~g}, 96 \%$). Chiral LC/MS showed that the product had an ee of 77.3%. The material was recrystallized from MTBE to give white crystals of 97.2% ee. $\mathrm{mp} 65-67^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=-26.5$ (c 1.0, CHCl_{3}); IR (film) 3002, 2935, 2838, 1756, 1725, 1612, 1586, 1514, 1443, 1412, 1362, 1304, $1248,1207,1176,1115,1077,1038,846,754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.07(\mathrm{~s}, 3 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{dd}, 1 \mathrm{H}, J=9.8,5.6 \mathrm{~Hz}), 4.11(\mathrm{~d}, 1 \mathrm{H}, J=14.6 \mathrm{~Hz}), 4.13(\mathrm{dd}, 1 \mathrm{H}, J=8.9,5.6$ $\mathrm{Hz}), 4.43(\mathrm{dd}, 1 \mathrm{H}, J=9.8,8.9 \mathrm{~Hz}), 4.80(\mathrm{~d}, 1 \mathrm{H}, J=14.6 \mathrm{~Hz}), 6.87(\mathrm{app} . \mathrm{d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.16$ (app. d, 2H, J = 8.7 Hz); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.9,47.1,55.4,62.4,63.5,114.4,126.9$, 130.1, 157.8, 159.7, 204.3; MS (EI) m/z (rel. intensity): 249 (6), 206 (9), 121 (100), 91 (3), 78 (5), 77 (4); HRMS (ESI) $m / z 272.0895(\mathrm{M}+\mathrm{Na})^{+}$; calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4}+\mathrm{Na}: 272.0898$.

Aldol Reactions

The preparation of compound $\mathbf{1 0}$ followed the route published in ref. ${ }^{1}$

Aldol route to building block 52:

Scheme 6. a) PCC, MS $4 \AA, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 84 \%$; b) (-)- $\mathrm{Ipc}_{2} \mathrm{~B}($ allyl $), \mathrm{Et}_{2} \mathrm{O},-100^{\circ} \mathrm{C}$; c) TBSCl , imidazole, $\mathrm{DMF}, 68 \%$, ee $=91 \%(\mathrm{GC})$ (over both steps); d) $\mathrm{O}_{3}, \mathrm{MeOH},-78^{\circ} \mathrm{C}$, then $\mathrm{PPh}_{3}, 67 \%$;
e) ketone 8, $\mathrm{TiCl}_{4},(\mathrm{iPr})_{2} \mathrm{NEt}, 78^{\circ} \mathrm{C} \rightarrow 0^{\circ} \mathrm{C}, 70 \%, \mathrm{dr}=1: 1.7$.

5-Heptynal (48). See ref. 5. To a stirred suspension of PCC ($10.6 \mathrm{~g}, 50 \mathrm{mmol}$) and powdered MS $4 \AA$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23 \mathrm{ml})$ was added dropwise a solution of 5-heptynol $47(1.75 \mathrm{~g}, 15.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23 \mathrm{ml})$. The reaction was allowed to stir for 8 h and then filtered through a short Celite column. The solvent was carefully evaporated at $0^{\circ} \mathrm{C}$ to give 48 as a colorless oil ($1.45 \mathrm{~g}, 84 \%$). IR (ATR) 2937, 2921, 2859, 2724, 1721, 1437, 1411, 1391, 1364, 1334, 1156, 1071, 1033, 925, $866,796,688 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.77(\mathrm{t}, 3 \mathrm{H}, J=2.6 \mathrm{~Hz}), 1.81(\mathrm{t}, 2 \mathrm{H}, J=7.1$ $\mathrm{Hz}), 2.21(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{dt}, 2 \mathrm{H}, J=7.1,1.5 \mathrm{~Hz}), 9.80(\mathrm{t}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.3,18.2,21.5,23.9,42.8,77.9,202.1$.
(1R)-1-Allyl-5-heptynyl tert-butyl(dimethyl)silyl ether (50). To a stirred solution of (-)$\mathrm{Ipc}_{2} \mathrm{~B}$ (allyl) $(6,7)\left(25.4 \mathrm{ml}, 0.5 \mathrm{M}\right.$ soln. in $\left.\mathrm{Et}_{2} \mathrm{O}, 12.7 \mathrm{mmol}\right)$ at $-100^{\circ} \mathrm{C}$ was added a solution of 5-heptynal $48(1.4 \mathrm{~g}, 12.7 \mathrm{mmol})$ in diethyl ether $(20 \mathrm{ml})$. The reaction was allowed to stir for 1 h at $-100^{\circ} \mathrm{C}$ and then quenched with $\mathrm{MeOH}(1 \mathrm{ml})$. The solvent was removed under vacuum at $0^{\circ} \mathrm{C}$ and the residue dissolved in $\mathrm{MeOH}(26 \mathrm{ml}) .8-H y d r o x y q u i n o l i n e(2.3 \mathrm{~g})$ was added and the reaction stirred overnight. The yellow precipitate formed was filtered off and the filtrate evaporated to dryness. Purification of the residue by flash chromatography (40:1, hexane:EtOAc) gave 49 as a light brown oil $(1.93 \mathrm{~g})$. The crude material was dissolved in DMF (20 ml) followed by the addition of TBSCl ($2.4 \mathrm{~g}, 15.88 \mathrm{mmol}$) and imidazole ($1.7 \mathrm{~g}, 25.4 \mathrm{mmol}$). The reaction was stirred overnight before it was diluted with hexane (250 ml). The solution was successively washed with 5% aq. HCl ., sat. aq. NaHCO_{3}, water and brine followed by drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ of the organic phase and evaporation of the solvent. The residue was purified by flash chromatography (40:1, hexane:EtOAc) to give 50 as a colorless oil ($2.05 \mathrm{~g}, 68 \%$). $[\alpha]_{D}^{20}=+9\left(c 0.07, \mathrm{CHCl}_{3}\right)$; IR (ATR) 2952, 2929, 2857, 1472, 1462, 1435, 1361, 1254, 1088, 1005, 938, 911, 880, 834, 808, $772,665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.53(\mathrm{~m}, 4 \mathrm{H}), 1.78(\mathrm{t}$, $3 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}), 2.12(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{ddd}, 2 \mathrm{H}, J=7.1,5.9,1.2 \mathrm{~Hz}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H})$, $5.06(\mathrm{~m}, 1 \mathrm{H}), 5.82(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.4,-4.3,3.6,18.2,18.9,24.9,26.0$, 36.0, 41.9, 71.8, 75.7, 79.3, 116.8, 135.4; MS (EI) m/z (rel. intensity): 225 (4), 209 (5), 185 (3), 133 (14), 99, (22), 93, (44), 75 (100), 73 (67); HRMS (CI) m/z $267.2141(\mathrm{M}+\mathrm{H})^{+}$; calcd. for
$\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{OSi}$: 267.2144; the enantiomeric excess (91% ee) was determined by chiral GC of alcohol 49.
(3R)-3-\{[tert-Butyl(dimethyl)silyl]oxy\}-7-nonynal (14). A stirred solution of 50 (2.01 g, 8.43 mmol) and Sudan Red 7B (enough to give red color) in $\mathrm{MeOH}(100 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ was treated with ozone until the red color disappeared. Argon was bubbled through the solution for 15 min before triphenylphosphine ($3.3 \mathrm{~g}, 1.5 \mathrm{eq}$.) was added and the reaction left to stir overnight. The solvent was evaporated and the residue purified by flash chromatography (100% hexane $\rightarrow 20: 1$, hexane:EtOAc) to give 14 as a colorless oil (1.51 g, 67\%). $[\alpha]_{D}^{20}=-7.8\left(c 0.7, \mathrm{CHCl}_{3}\right)$; IR (film) 2954, 2930, 2858, 2712, 1713, 1472, 1463, 1436, 1409, 1389, 1376, 1361, 1295, 1256, 1217, $1098,1027,1006,939,837,811,776,680,665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07(\mathrm{~s}, 3 \mathrm{H})$, $0.09(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.46-1.70(\mathrm{~m}, 6 \mathrm{H}), 1.78(\mathrm{t}, 3 \mathrm{H}, J=2.5 \mathrm{~Hz}), 2.15$ (dddd, 2H, $J=9.2$, $5.1,2.5,2.5 \mathrm{~Hz}), 2.52(\mathrm{dd}, 1 \mathrm{H}, J=2.4,1.5 \mathrm{~Hz}), 2.54(\mathrm{t}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 4.23(\mathrm{tt}, 1 \mathrm{H}, J=5.7$ $\mathrm{Hz}), 9.82(\mathrm{t}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.3,-4.0,18.4,19.1,24.9,26.1$, 37.2, 51.1, 68.2, 76.4, 77.6, 79.0, 202.6; MS (EI) m/z (rel. intensity): 211 (50), 169 (41), 167 (32), 157 (13), 129 (10), 119 (19), 101 (100), 93 (56), 75 (64), 59 (39); HRMS (CI) m/z 269.1933 (M + $\mathrm{H})^{+}$; calcd. for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}: 269.1936$.

(4R)-4-((5R)-5-\{[tert-Butyl(dimethyl)silyl]oxy\}-3-hydroxy-9-undecynoyl)-3-(4-methoxy

 benzyl)-1,3-thiazolidin-2-one (52). To a solution of ketone 8 ($332 \mathrm{mg}, 1.25 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 $\mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{TiCl}_{4}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.35 \mathrm{ml}, 1.35 \mathrm{mmol}\right)$. The reaction was allowed to stir for 20 min before $(i \operatorname{Pr})_{2} \mathrm{NEt}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.7 \mathrm{ml}, 1.7 \mathrm{mmol}\right)$ was introduced. After stirring for 2 h at $-78^{\circ} \mathrm{C}$ the reaction was warmed to $0^{\circ} \mathrm{C}$ and allowed to stir for 3 h . The reaction was cooled to $-78^{\circ} \mathrm{C}$ and a solution of aldehyde $\mathbf{1 4}(160 \mathrm{mg}, 0.66 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ was added dropwise. After stirring for 3 h at $-78^{\circ} \mathrm{C}$, the reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture allowed to warm to room temperature before water was added to dissolve salts. The organic layer was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic layers were washed with aq. NaHCO_{3} and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by flash chromatography ($2: 1$, hexane:EtOAc) to give 52 as a mixture of diastereoisomers (colorless oil, $247 \mathrm{mg}, 70 \%, \mathrm{dr}=1: 1.7$). IR (ATR) 3456, 2943, 2930, 2856,$1724,1670,1611,1586,1513,1462,1441,1390,1360,1303,1248,1174,1108,1073,1031$, $1004,938,834,809,775,713,662 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.08 \& 0.09(2 \mathrm{~s}, 6 \mathrm{H})$, $0.87 \& 088(2 \mathrm{~s}, 9 \mathrm{H}), 1.40-1.71(\mathrm{~m}, 6 \mathrm{H}), 1.75(\mathrm{t}, 3 \mathrm{H}, J=2.5 \mathrm{~Hz}), 2.07-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{dd}$, $0.7 \mathrm{H}, J=15.4,3.6 \mathrm{~Hz}), 2.46(\mathrm{dd}, 0.3 \mathrm{H}, J=16.1,4.1 \mathrm{~Hz}), 2.56(\mathrm{dd}, 0.3 \mathrm{H}, J=16.1,7.8 \mathrm{~Hz}), 2.61$ $(\mathrm{dd}, 0.7 \mathrm{H}, J=15.4,8.8 \mathrm{~Hz}), 3.15 \& 3.22(2 \mathrm{dd}, 1 \mathrm{H}, J=11.5,3.6 \mathrm{~Hz}), 3.40-3.48(\mathrm{ddd}, 1.3 \mathrm{H}, J=$ $11.5,9.3,2.0 \mathrm{~Hz}$), 3.73 (br s, 0.7 H), $3.75 \& 3.76$ (s, 3H), $3.82 \& 3.83$ ($2 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.7 \mathrm{~Hz}$), 3.91$4.03(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.23(\mathrm{~m}, 0.6 \mathrm{H}), 4.25(\mathrm{dd}, 0.7 \mathrm{H}, J=9.5,3.6 \mathrm{~Hz}), 4.33-4.41(\mathrm{~m}, 0.7 \mathrm{H}), 4.94 \&$ $5.03(2 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.7 \mathrm{~Hz}), 6.78-6.84(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.15(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.8,-4.7,-4.6,-4.1,3.4,17.9,18.6,18.7,24.1,25.0,25.8,26.9,27.2,35.2$, $36.6,41.2,42.5,46.4,46.5,47.2,47.3,55.2,65.3,65.7,65.8,67.0,70.9,71.9,75.9,78.6,78.7$, 114.1, 114.2, 127.5, 127.6, 129.8, 130.1, 159.4, 171.7, 171.8, 205.6, 205.7; MS (EI) m/z (rel. intensity): 515 (1), 476 (1), 458 (3), 265 (1), 222 (7), 211 (4), 121 (100); HRMS (ESI) m/z $556.2523(\mathrm{M}+\mathrm{Na})^{+}$; calcd. for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{NO}_{5} \mathrm{SSi}+\mathrm{Na}$: 556.2528.

The following compounds were prepared analogously:
(4S)-4-((5R,8S)-5-\{[tert-Butyl(dimethyl)silyl]oxy\}-3-hydroxy-8-methyl-9-undecynoyl)-3-(4-methoxybenzyl)-1,3-oxazolidin-2-one (54). The procedure was adopted from the previous aldol
 reaction using 16 ($159 \mathrm{mg}, 0.64 \mathrm{mmol}$), and aldehyde 7 ($2.1 \mathrm{ml}, 0.25 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.5 \mathrm{mmol}$). Colorless oil (200 $\mathrm{mg}, 71 \%, \mathrm{dr}=3.3: 1$). IR (film) $3458,2953,2930,2857$, $1758,1612,1586,1514,1471,1462,1443,1414,1372$,

1304, 1250, 1177, 1114, 1075, 1037, 837, 811, $776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.050 \&$ $0.056(2 \mathrm{~s}, 6 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 1.09(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 1.22-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.73$ $(\mathrm{d}, 3 \mathrm{H}, J=2.2 \mathrm{~Hz}), 1.74-1.80(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{dd}, 0.8 \mathrm{H}, J=15.5,3.5 \mathrm{~Hz}), 2.26-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.40$ $(\mathrm{dd}, 0.2 \mathrm{H}, J=11.5,4.0 \mathrm{~Hz}), 2.50(\mathrm{dd}, 0.8 \mathrm{H}, J=15.5,8.8 \mathrm{~Hz}), 3.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.90-$ $3.97(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~d}, 1 \mathrm{H}, J=14.7 \mathrm{~Hz}), 4.13-4.21(\mathrm{~m}, 2.2 \mathrm{H}), 4.27-4.36(\mathrm{~m}, 1.8 \mathrm{H}), 4.68(\mathrm{~d}, 0.8 \mathrm{H}$, $J=14.6 \mathrm{~Hz}), 4.77(\mathrm{~d}, 0.2 \mathrm{H}, J=14.7 \mathrm{~Hz}), 6.77-6.82(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.14(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.9,-4.8,-4.7,-4.1,3.3,17.8,21.3,21.4,25.7,25.9,26.0,32.1,33.0,33.8$, $35.4,41.3,42.4,46.6,46.8,47.1,55.1,61.9,62.4,63.1,63.3,64.9,65.2,67.2,67.8,71.1,72.4$,
$75.9,77.3,83.2,83.3,114.1,114.2,127.0,127.1,129.9,130.1,167.9,159.5,205.6,205.9 ; \mathrm{MS}$ (EI) m / z (rel. intensity): 513 (0.5), 456 (15), 239 (3), 225 (2), 121 (100); HRMS (ESI) m/z $554.2910(\mathrm{M}+\mathrm{Na})^{+}$; calcd. for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{NO}_{6} \mathrm{Si}+\mathrm{Na}$: 554.2913.

(4S)-4-((5R)-5-\{[tert-Butyl(dimethyl)silyl]oxy\}-3-hydroxy-9-undecynoyl)-3-(4-methoxy

 benzyl)-1,3-oxazolidin-2-one (55). The standard procedure was used with aldehyde $\mathbf{1 4}$ (250 mg , $1.04 \mathrm{mmol})$ and ketone $\mathbf{1 6}$ ($311 \mathrm{mg}, 1.25 \mathrm{mmol}$). The crude product was purified by flash chromatography ($2: 1$, hexane: EtOAc) to give two partially separated fractions of the major isomer 55a ($358 \mathrm{mg}, 67 \%, \mathrm{dr}=9.3: 1$) and the minor isomer $55 \mathbf{b}(39 \mathrm{mg}, 7 \%, \mathrm{dr}=1.6: 1)$. Overall isomer ratio $\mathrm{dr}=7: 1$.

Major isomer 55a: IR (ATR) 3460, 2952, 2930, 2857, 1745, 1612, 1586, 1514, 1412, 1371, 1303, 1247, 1176, 1074, 1033, 911, 835, 809, 774, 730, $664 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.05(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 1.36-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.51-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.72(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=2.5$ Hz), 2.06-2.12 (m, 2H), $2.15(\mathrm{dd}, 1 \mathrm{H}, J=15.5,3.6 \mathrm{~Hz}), 2.50(\mathrm{dd}, 1 \mathrm{H}, J=15.5,8.8 \mathrm{~Hz}), 3.68(\mathrm{br}$ $2,1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.91-3.98(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.7 \mathrm{~Hz}), 4.12-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.27-4.36$ (m, 2H), $4.68(\mathrm{~d}, 1 \mathrm{H}, J=14.7 \mathrm{~Hz}), 6.79$ (app. d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$), 7.11 (app. d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.9,-4.7,3.3,17.8,18.6,24.9,25.7,35.1,41.2,46.8,55.1,62.4$, $63.1,65.2,70.7,75.9,78.5,114.1,127.1,130.1,157.7,159.5,205.8 ; \mathrm{MS}$ (EI) m / z (rel. intensity): 499 (0.4), 442 (3), 249 (3), 206 (4), 169 (4), 121 (100); HRMS (ESI) $m / z 540.2753(\mathrm{M}+\mathrm{Na})^{+}$; calcd. for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{NO}_{6} \mathrm{Si}+\mathrm{Na}$: 540.2757.

Minor isomer 55b (mixture of diastereomers): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.10(2 \mathrm{~d}, 6 \mathrm{H}), 0.89$ $(\mathrm{s}, 9 \mathrm{H}), 1.40-1.72(\mathrm{~m}, 6.4 \mathrm{H}), 1.78(2 \mathrm{~s}, 3 \mathrm{H}), 2.10-2.19(\mathrm{~m}, 2.4 \mathrm{H}), 2.29-2.58(\mathrm{~m}, 1.6 \mathrm{H}), 3.795(2 \mathrm{~s}$, $3 \mathrm{H}), 3.92-4.02(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~d}, 1 \mathrm{H}, J=14.6 \mathrm{~Hz}), 4.10-4.24(\mathrm{~m}, 2.6 \mathrm{H}), 4.34-4.41(\mathrm{~m}, 1.6 \mathrm{H}), 4.75$ $(\mathrm{d}, 0.4 \mathrm{H}, J=14.6 \mathrm{~Hz}), 4.85(\mathrm{~d}, 0.6 \mathrm{H}, J=14.7 \mathrm{~Hz}), 6.86(2 \mathrm{app} . \mathrm{d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.17(2 \mathrm{app}$. $\mathrm{d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.7,-4.6,-4.5,-3.5,3.9,17.9,18.8,24.1$, $25.1,25.2,25.9,35.2,35.3,36.8,41.1,41.2,42.3,46.8,47.0,47.2,47.3,55.3,62.1,62.7,63.1$,
$63.4,65.1,65.3,67.6,70.9,71.1,72.4,76.1,78.6,78.7,114.3,114.4,127.0,127.1,127.2,130.1$, 130.3, 157.9, 159.6, 205.9, 206.1.
(4R)-4-((5R)-5-\{[tert-Butyl(dimethyl)silyl]oxy\}-3-hydroxy-9-undecynoyl)-3-(4-methoxy benzyl)-1,3-oxazolidin-2-one (56). The standard aldol procedure was used with aldehyde 14 $(250 \mathrm{mg}, 1.04 \mathrm{mmol})$ and ketone $17(311 \mathrm{mg}, 1.25 \mathrm{mmol})$. The product was obtained in form of
 two diastereomers. The major isomer 56a was an colorless oil ($163 \mathrm{mg}, 30 \%$) and the minor isomer 56b was a white solid ($147 \mathrm{mg}, 27 \%$) that were separable by chromatography ($3: 1$, hexane:EtOAc).

Major isomer 56a: $[\alpha]_{D}^{20}=-4.4\left(c 0.73, \mathrm{CHCl}_{3}\right)$; IR (ATR) 3462, 2941, 2929, 2857, 1747, 1612, $1514,1412,1371,1303,1248,1176,1075,1032,835,809,774,731,663 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.09(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=4.6 \mathrm{~Hz}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 1.37-1.61(\mathrm{~m}, 6 \mathrm{H}), 1.74(\mathrm{t}, 3 \mathrm{H}, J=2.5$ $\mathrm{Hz}), 2.07-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{dd}, 1 \mathrm{H}, J=15.3,3.7 \mathrm{~Hz}), 2.51(\mathrm{dd}, 1 \mathrm{H}, J=15.3,8.7 \mathrm{~Hz}), 3.51(\mathrm{bs}$ $\mathrm{s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.90-3.97(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~d}, 1 \mathrm{H}, J=14.7 \mathrm{~Hz}), 4.08-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~m}$, 2H), $4.35(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~d}, 1 \mathrm{H}, J=14.7 \mathrm{~Hz}), 6.81$ (app. d, 2H, $J=8.6 \mathrm{~Hz}), 7.13$ (app. d, 2H, $J=$ $8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.8,-4.1,3.3,17.8,18.6,23.9,25.7,36.6,42.4,46.6$, $46.8,55.1,62.4,63.0,67.7,72.3,75.9,78.5,114.1,127.1,130.0,157.8,159.5,205.7$; MS (EI) m/z (rel. intensity): 460 (1), 442 (6), 211 (4), 206 (3), 169 (3), 167 (3), 122 (8), 121 (100), 101 (9), 93 (7), 91 (2), 75 (9), 73 (7) 59 (4); HRMS (ESI) m/z 518.2935 ($\mathrm{M}+\mathrm{H})^{+}$; calcd. for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{NO}_{6}$ Si: 518.2937.

Minor isomer 56b: mp $77-79^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+33.6\left(c 0.78, \mathrm{CHCl}_{3}\right)$; IR (ATR) 3415,2952 , 2932, $2857,1723,1613,1516,1451,1433,1347,1307,1256,1225,1185,1102,1069,1032,1018$, 941, $930,838,823,808,767,753,740,726,660 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.09$ (s, $6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=14.3,5.2,2.2 \mathrm{~Hz}), 1.58-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.76(\mathrm{t}$, $3 \mathrm{H}, J=2.5 \mathrm{~Hz}$), 2.10-2.16 (m, 2H), $2.31(\mathrm{dd}, 1 \mathrm{H}, J=15.9,3.7 \mathrm{~Hz}), 2.49(\mathrm{dd}, 1 \mathrm{H}, J=15.9,8.5$ Hz), 3.63 (br s, 1H), $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.95-4.01(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.7 \mathrm{~Hz}), 4.11(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $9.6,5.6 \mathrm{~Hz}), 4.19(\mathrm{dd}, 1 \mathrm{H}, J=8.9,5.6 \mathrm{~Hz}), 4.34-4.42(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{~d}, 1 \mathrm{H}, J=14.7 \mathrm{~Hz}), 6.84$
(app. d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$), 7.12 (app. d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.8$, $4.6,3.4,17.9,18.7,25.0,25.7,35.2,41.1,46.7,47.2,55.2,62.0,63.3,64.9,70.8,76.0,78.6$, 114.2, 127.0, 110.0, 157.9, 159.5, 205.9; MS (EI) m / z (rel. intensity): 499 (0.8), 442 (11), 249 (6), 206 (8), 169 (8), 121 (100), 101 (12); HRMS (ESI) $m / z 540.2751(\mathrm{M}+\mathrm{Na})^{+}$; calcd. for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{NO}_{6} \mathrm{Si}+\mathrm{Na}: 540.2757$.

Compound 57a (major isomer). $[\alpha]_{D}^{20}=+59.0$ (c 1.38, CHCl_{3}). IR (neat) 3443, 2972, 1725,
 $1678,1513,1081 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{~d}, J=$ $14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=9.1,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.03-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 3.60(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=11.4,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=11.4,3.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.61(\mathrm{dd}, J=16.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=16.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.76(\mathrm{~m}$, $1 \mathrm{H}), 1.78(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{ddd}, J=14.4,5.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.43-1.28$ $(\mathrm{m}, 2 \mathrm{H}), 1.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 206.2(\mathrm{C}), 171.8(\mathrm{C}), 159.5(\mathrm{C}), 129.9(\mathrm{CH}), 127.5(\mathrm{C}), 114.3(\mathrm{CH}), 83.4(\mathrm{C}), 76.0(\mathrm{C})$, $71.1(\mathrm{CH}), 65.4(\mathrm{CH}), 64.9(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 47.3\left(\mathrm{CH}_{2}\right), 46.7\left(\mathrm{CH}_{2}\right), 41.3\left(\mathrm{CH}_{2}\right), 34.0\left(\mathrm{CH}_{2}\right)$, $33.1\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 26.1(\mathrm{CH}), 25.8\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right), 18.0(\mathrm{C}), 3.4\left(\mathrm{CH}_{3}\right),-4.6\left(\mathrm{CH}_{3}\right),-4.8$ $\left(\mathrm{CH}_{3}\right)$. HRMS (ESI+) calcd for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{NNaO}_{5} \mathrm{SSi}\left(\mathrm{M}^{+}\right) 570.2683$; found 570.2685.

Compound 57b (minor isomer). $[\alpha]_{D}^{20}=+10.9$ (c 1.16, CHCl_{3}). IR (neat) 3488, 2930, 2857,
 $1725,1673,1513,1248 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.15 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{~d}, J$ $=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=9.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.14(\mathrm{~m}$, $1 \mathrm{H}), 4.02-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 3.59-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=11.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=11.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}$, $J=15.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.62-1.48$ $(\mathrm{m}, 3 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.7$ (C), 171.7 (C), 159.4 (C), $130.1(\mathrm{CH}), 127.7$ (C), $114.2(\mathrm{CH}), 83.4(\mathrm{C}), 76.1(\mathrm{C}), 73.0(\mathrm{CH}), 68.5(\mathrm{CH}), 65.8(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 47.3\left(\mathrm{CH}_{2}\right), 46.3$
$\left(\mathrm{CH}_{2}\right), 42.5\left(\mathrm{CH}_{2}\right), 35.6\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 26.2(\mathrm{CH}), 25.8\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right), 17.9$ (C), $3.4\left(\mathrm{CH}_{3}\right),-4.0\left(\mathrm{CH}_{3}\right),-4.8\left(\mathrm{CH}_{3}\right)$, HRMS (ESI+): calcd. for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{NnaO}_{5} \mathrm{SSi}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$: 570.2683; found 570.2685.

Ketal Formations

Scheme 7. a) aq. $\mathrm{HCl}(1 \mathrm{M})$, THF, quant., b) camphorsulfonic acid cat., $\mathrm{MeOH}, 92 \%(20 \alpha), 82 \%$ (20 β).
(4S)-4-[(2R,4S,6R)-6-(4-Hexynyl)-4-hydroxy-2-methoxytetrahydro-2H-pyran-2-yl]-3-(4-methoxybenzyl)-1,3-thiazolidin-2-one (20 α) and (4S)-4-[(2R,4R,6R)-6-(4-hexynyl)-4-hydroxy-2-methoxytetrahydro-2H-pyran-2-yl]-3-(4-methoxybenzyl)-1,3-thiazolidin-2-one (208). To a stirred solution of $52(325 \mathrm{mg}, 0.61 \mathrm{mmol})$ in THF $(12 \mathrm{ml})$ was added aq. $\mathrm{HCl}(1 \mathrm{M}$, 1.6 ml). The reaction was stirred overnight and then quenched with aq. NaHCO_{3}, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times)$, the combined organic phases were washed with sat. aq. NaCl and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After evaporation of the solvent the residue was purified by flash chromatography (1:1, hexane:EtOAc) to give the separable minor $53 \beta(88 \mathrm{mg})$ and major 53α diastereomers ($164 \mathrm{mg}, 100 \%$ overall) in a dr = 1.9:1. The products were used without delay in the next reaction.

A catalytic amount of CSA was added to a solution of the major isomer $53 \alpha(164 \mathrm{mg}, 0.39$ $\mathrm{mmol})$ in methanol (4 ml). The reaction was stirred overnight before quenching with sat. aq. NaHCO_{3}. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$, the combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residues was purified by flash chromatography ($2: 1$, hexane:EtOAc) to give product $20 \alpha(156 \mathrm{mg}, 92 \%)$ as an oil. The minor isomer $\mathbf{2 0 \beta}$ was prepared analogously as a white solid ($60 \mathrm{mg}, 82 \%$).

Product 20 α : $[\alpha]_{D}^{20}=+28.8$ (c 0.74, CHCl_{3}); IR (ATR) 3441, 2943, 1738, 1666, 1611, 1585, $1511,1442,1402,1364,1302,1245,1216,1199,1174,1107,1070,1030,980,938,927,894$, $820,756,721,665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.21(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 1.48(\mathrm{dd}, 1 \mathrm{H}, J$ $=12.4,11.2 \mathrm{~Hz}), 1.50-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{t}, 3 \mathrm{H}, J=2.5 \mathrm{~Hz}), 1.71-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.95-2.01(\mathrm{~m}$, $1 \mathrm{H}), 2.15-2.25(\mathrm{~m}, 3 \mathrm{H}), 2.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.54-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.78$ ($\mathrm{s}, 3 \mathrm{H}$), $3.83(\mathrm{dd}, 1 \mathrm{H} J=8.5,3.5 \mathrm{~Hz}), 3.98-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~d}, 1 \mathrm{H}, J=14.5 \mathrm{~Hz}), 5.08(\mathrm{~d}, 1 \mathrm{H}$, $J=14.5 \mathrm{~Hz}$), 6.85 (app. d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$), 7.21 (app. d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.4,18.8,25.3,25.4,35.3,36.9,40.5,47.2,47.4,55.2,58.9,64.3,70.1,76.0,78.6$, 102.9, 114.0, 128.7, 129.7, 159.1, 172.9; MS (EI) m/z (rel. intensity): 433 (0.5), 212 (10), 211 (77), 193 (9), 179 (14), 161 (24), 137 (71), 133 (45), 122 (13), 121 (100), 119 (62), 111 (19), 109 (13), 103 (14), 95 (34), 93 (10), 91 (14); HRMS (ESI) $m / z 456.1819(\mathrm{M}+\mathrm{Na})^{+}$; calcd. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{~S}+\mathrm{Na}: 456.1820$.

Product 20 β : $\mathrm{mp} 127-129^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+36.4\left(c 0.55, \mathrm{CHCl}_{3}\right)$; IR (ATR) $3547,2935,2833,1738$, $1662,1608,1585,1510,1436,1403,1366,1366,1305,1287,1241,1210,1199,1174,1099$, 1087, 1063, 1033, 974, 953, 935, 924, 902, 886, 847, 839, 822, 808, 758, $662 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.46(\mathrm{ddd}, 1 \mathrm{H}, J=14.1,12.2,2.7 \mathrm{~Hz}), 1.53-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{t}, 3 \mathrm{H}, J=$ $2.5 \mathrm{~Hz}), 1.74-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=14.4,3.7 \mathrm{~Hz}), 2.07$ (ddd, $1 \mathrm{H}, J=14.4,2.3,2.3 \mathrm{~Hz}$), 2.18-2.28 (m, 2H), 3.15 (s, 3H), 3.21-3.32 (m, 2H), 3.65 (br d, 1H), 3.78 (dd, 1H, J = 8.8, 3.0 Hz), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.90-3.98(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.4 \mathrm{~Hz}), 5.09(\mathrm{~d}, 1 \mathrm{H}, J=$ 14.4 Hz), 6.87 (app. d, 2H, $J=8.6 \mathrm{~Hz}$), 7.22 (app. d, 2H, $J=8.6 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.5,18.7,25.3,25.4,32.4,35.3,37.8,47.3,47.7,55.3,58.9,64.0,66.1,76.2,78.5$, 103.6, 114.1, 128.7, 129.8, 159.2, 172.8; MS (EI) m/z (rel. intensity): 433 (0.2), 212 (7), 211 (56),

193 (8), 179 (16), 161 (13), 137 (68), 133 (30), 122 (12), 121 (100), 119 (46), 111 (14), 109 (8), 103 (7), 95 (12), 93 (8), 91 (12); HRMS (ESI) $m / z 456.1818(\mathrm{M}+\mathrm{Na})^{+}$; calcd. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{~S}+$ Na: 456.1820 .

The following compounds were prepared analogously:
(4R)-4-\{(2R,4S,6R)-4-Hydroxy-2-methoxy-6-[(3S)-3-methyl-4-hexynyl]tetrahydro-2H-pyran-2-yl\}-3-(4-methoxybenzyl)-1,3-oxazolidin-2-one (19 $)$ and (4R)-4-\{(2R,4R,6R)-4-hydroxy-2-methoxy-6-[(3S)-3-methyl-4-hexynyl]tetrahydro-2H-pyran-2-yl\}-3-(4-methoxybenzyl)-1,3-oxazolidin-2-one (19 $\boldsymbol{\beta}$). Prepared as described above by acid catalyzed cyclization of 54 to form the hemiketal as a mixture of diastereomers ($32 \mathrm{mg}, 15 \%+149 \mathrm{mg}$, 72%), followed by separate methyl glycoside formation to give isomer $\mathbf{1 9} \alpha(108 \mathrm{mg}, 70 \%)$ as an oil and isomer $19 \beta(20 \mathrm{mg}, 61 \%)$ as an oil.

Isomer 19 $\alpha:[\alpha]_{D}^{20}=+48.2\left(c 0.69, \mathrm{CHCl}_{3}\right)$; IR (film) $3428,2941,2871,1752,1612,1513,1441$, 1416, 1362, 1303, 1246, 1208, 1175, 1141, 1082, 1033, 980, 844, $676 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.11(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.19($ app. q, $1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 1.28-1.40(\mathrm{~m} 2 \mathrm{H}), 1.50-1.59$ $(\mathrm{m}, 1 \mathrm{H}), 1.61-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~d}, 3 \mathrm{H}, J=2.3 \mathrm{~Hz}), 1.78-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.98(\mathrm{br} \mathrm{dd}, 2 \mathrm{H}, J$ $=12.7,4.5 \mathrm{~Hz}), 2.31-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.75$ $(\mathrm{m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.94-4.16(\mathrm{~m}, 4 \mathrm{H}), 4.75(\mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}), 6.82($ app. d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz})$, 7.23 (app. d, $2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.6,21.9,26.2,33.6,34.3,36.2$, $40.8,46.4,48.0,55.3,55.9,63.1,64.5,70.2,76.4,83.2,101.9,114.0,128.3,130.4,158.9,159.3$; MS (EI) m/z (rel. intensity): 431 (1), 225 (39), 207 (21), 183 (2), 181 (3), 175 (15), 151 (27), 147 (37), 133 (55), 125 (10), 121 (100), 109 (24), 103 (13), 67 (14); HRMS (ESI) $\mathrm{m} / \mathrm{z} 454.2201$ (M + $\mathrm{Na})^{+}$; calcd. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{6}+\mathrm{Na}$: 454.2205.

Isomer 19 : $[\alpha]_{D}^{20}=+59.0\left(c 0.26, \mathrm{CHCl}_{3}\right)$; IR $(\mathrm{KBr}) 3516$, 2971, 2935, 2919, 1747, 1611, 1584, 1512, 1463, 1435, 1415, $1394,1368,1305,1241,1207,1173,1107,1084,1033,1019$, 977, 877, 839, 765, 753, $675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.20(\mathrm{~d}, 3 \mathrm{H}, J=6.9), 1.41-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.66$ $(\mathrm{m}, 1 \mathrm{H}), 1.71-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~d}, 3 \mathrm{H}, 2.4), 1.80-1.97(\mathrm{~m}$, $3 \mathrm{H}), 2.40-2.49(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.4 \mathrm{~Hz}), 3.73(\mathrm{dd}, 1 \mathrm{H}, J=9.5,4.8 \mathrm{~Hz})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.93$ (dddd, $1 \mathrm{H}, J=11.8,9.2,2.8,2.8 \mathrm{~Hz}) 4.14(\mathrm{t}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 4.17(\mathrm{~d}, 1 \mathrm{H}, J=$ $14.3 \mathrm{~Hz}), 4.23(\mathrm{dd}, 2 \mathrm{H}, J=9.4,4.8 \mathrm{~Hz}), 4.81(\mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}), 6.87-6.92(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.34$ ($\mathrm{m}, 2 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.6,21.9,26.3,31.6,33.5,34.2,38.1,46.6,48.3,55.4$, 56.1, 62.9, 64.1, 66.2, 76.4, 83.2, 102.3, 114.1, 128.2, 130.4, 158.8, 159.5; MS (EI) m/z (rel. intensity): 431 (0.35), 225 (51), 207 (13), 175 (11), 151 (34), 147 (25), 133 (45), 131 (2), 125 (16), 121 (100), 109 (14), 105 (10), 67 (14); HRMS (ESI) $m / z 432.2385(\mathrm{M}+\mathrm{H})^{+}$; calcd. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{6}: 432.2386$.
(4S)-4-[(2R,4S,6R)-6-(4-Hexynyl)-4-hydroxy-2-methoxytetrahydro-2H-pyran-2-yl]-3-(4-methoxybenzyl)-1,3-oxazolidin-2-one (21α) and (4S)-4-[(2R,4R,6R)-6-(4-hexynyl)-4-
hydroxy-2-methoxytetrahydro-2H-pyran-2-yl]-3-(4-methoxybenzyl)-1,3-oxazolidin-2-one (21 β). Prepared as described above by acid catalyzed cyclization of aldol product 55 (315 mg ,

 0.61 mmol) to form the hemiketal as two diastereomers (41 $\mathrm{mg}, 17 \%+198 \mathrm{mg}, 83 \%$), which were separately transformed into the corresponding methyl glycosides. The major isomer 21α ($207 \mathrm{mg}, 91 \%$) was obtained as a wax and the minor isomer 21β ($22 \mathrm{mg}, 56 \%$) as a solid.

Isomer 21 α : $[\alpha]_{D}^{20}=+53.2\left(c 0.43, \mathrm{CHCl}_{3}\right)$; IR (film) 3433, 2943, 2837 1750, 1612, 1586, 1513, 1486, 1440, 1416, 1362, $1303,1246,1203,1175,1140,1114,1082,1032,982,845,767,677 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.20($ app. q, $1 \mathrm{H}, J=11.8 \mathrm{~Hz}), 1.33($ app. t, $1 \mathrm{H}, J=11.8 \mathrm{~Hz}), 1.43-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.71$
(t, 3H, J = 2.3 Hz), 1.72-1.79 (m, 2H), 1.92-1.99 (m, 2H), 2.09-2.23 (m, 2H), 2.98 (s, 3H), 3.36 (br s, 1H), 3.51-3.59 (m, 1H), 3.74 (s, 3H), 3.74-3.79 (dd, 1H, J = 9.6, 5.1 Hz), $4.01(\mathrm{dd}, 1 \mathrm{H}, J=$ $15.5,4.5 \mathrm{~Hz}$), 4.09 (app. t, $1 \mathrm{H}, J=9.4 \mathrm{~Hz}$), 4.13-4.19 (m, 2H), $4.75(\mathrm{~d}, 1 \mathrm{H}, J=14.5 \mathrm{~Hz}), 6.83$ (app. d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$), 7.22 (app. d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.3,18.6$, $25.2,35.1,35.8,40.3,46.1,47.7,55.1,55.8,62.9,63.8,69.9,75.9,78.5,101.6,113.8,128.0$, 129.9, 158.8, 159.1; MS (EI) m/z (rel. intensity): 417 (1), 211 (51), 179 (10), 169 (3), 167 (3), 161 (14), 137 (49), 133 (35), 121 (100), 119 (47), 111 (17), 103 (12), 95 (26), 91 (12), 71 (10); HRMS (ESI) $\mathrm{m} / \mathrm{z} 440.2053(\mathrm{M}+\mathrm{Na})^{+}$; calcd. for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{6}+\mathrm{Na}: 440.2049$.

Isomer 21 $\beta: \mathrm{mp} 126-128^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+55.1\left(c 0.32, \mathrm{CHCl}_{3}\right)$; IR (ATR) $3524,2952,2915,2888$, $2843,1741,1611,1584,1511,1431,1413,1391,1368,1334,1305,1240,1209,1184,1174$, $1164,1105,1080,1062,1052,1027,1003,978,949,926,882,841,826,801,764,752,719,674$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.46(\mathrm{ddd}, 1 \mathrm{H}, J=14.1,12.2,2.7 \mathrm{~Hz}), 1.52-1.71(\mathrm{~m}, 3 \mathrm{H})$, $1.72-1.91(\mathrm{~m}, 5 \mathrm{H}), 1.78(\mathrm{t}, 3 \mathrm{H}, J=2.5 \mathrm{~Hz}), 2.17-2.32(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.75$ (dd, $1 \mathrm{H}, J=9.5,4.8 \mathrm{~Hz}$), $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.92-4.00(\mathrm{~m}, 1 \mathrm{H}), 4.14($ app. t, $2 \mathrm{H}, J=9.5 \mathrm{~Hz}$), $4.18(\mathrm{~d}$, $1 \mathrm{H}, J=14.4 \mathrm{~Hz}), 4.23(\mathrm{dd}, 1 \mathrm{H}, J=9.4,4.8 \mathrm{~Hz}), 4.80(\mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}), 6.89($ app. d, $2 \mathrm{H}, J=$ 8.6 Hz), 7.28 (app. d, $2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}$), ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.6,18.9,25.3,31.6,35.3$, $37.9,46.6,48.2,55.3,56.1,62.9,64.0,66.0,76.2,78.5,102.3,114.1,128.2,130.2,158.7,159.4 ;$ MS (EI) m/z (rel. intensity): 418 (0.22), 367 (2), 212 (4), 211 (31), 193 (4), 179 (10), 161 (8), 137 (40), 133 (21), 121 (100), 119 (30), 111 (10); HRMS (ESI) m/z $440.2046(\mathrm{M}+\mathrm{Na})^{+}$; calcd. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NNaO}_{6}$: 440.2049.
(4R)-4-[(2R,4S,6R)-6-(4-Hexynyl)-4-hydroxy-2-methoxytetrahydro-2H-pyran-2-yl]-3-(4-methoxybenzyl)-1,3-oxazolidin-2-one (22 α) and (4R)-4-[(2R,4R,6R)-6-(4-hexynyl)-4-hydroxy-2-methoxytetrahydro-2H-pyran-2-yl]-3-(4-methoxybenzyl)-1,3-oxazolidin-2-one (22 $\boldsymbol{2}$). Prepared as described above by acid catalyzed cyclization of aldol product 56 (315 mg , 0.61 mmol) to form the hemiketal as a two diastereomers ($81 \mathrm{mg}, 76 \%+9 \mathrm{mg}, 8 \%$), which were separately transformed into the corresponding methyl glycosides 22α ($77 \mathrm{mg}, 92 \%$) and $\mathbf{2 2 \beta}$ (58 $\mathrm{mg}, 88 \%)$.

Isomer 22 α : $[\alpha]_{D}^{20}=+30.6\left(c \quad 0.41, \mathrm{CHCl}_{3}\right.$); IR (ATR) 3520, 2942, $2838,1745,1612,1585,1513,1439,1410,1366,1303,1287$, $1229,1175,1103,1080,1026,957,886,819,766,751,735,717$, $675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.38-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.51-$ $1.62(\mathrm{~m}, 3 \mathrm{H}), 1.65(\mathrm{dd}, 1 \mathrm{H}, J=14.4,3.7 \mathrm{~Hz}), 1.73(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=2.5$ $\mathrm{Hz}), 1.77-1.88(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.13(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{dd}, 1 \mathrm{H}, J=9.3,4.7 \mathrm{~Hz}), 3.83-3.89(\mathrm{~m}$, $1 \mathrm{H}), 4.12-4.26(\mathrm{~m}, 4 \mathrm{H}), 4.94(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}), 6.86$ (app. d, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}$), 7.17 (app. d, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}$); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.4,18.8,24.9$, $32.5,34.6,37.4,46.2,47.9,53.8,55.3,63.6,64.2,65.2,75.9,78.5,102.1,114.2,128.1,128.9$, 158.9, 159.3; MS (EI) m/z (rel. intensity): 417 (0.3), 211 (53), 193 (8), 179 (19), 161 (15), 151 (9), 138 (7), 137 (80), 121 (100), 119 (56), 111 (17), 109 (10), 95 (14), 93 (10), 91 (13); HRMS (ESI) $m / z 440.2046(\mathrm{M}+\mathrm{Na})^{+}$; calcd. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{6}+\mathrm{Na}$: 440.2049.

Isomer 22 $\beta:[\alpha]_{D}^{20}=+30.0\left(c 0.41, \mathrm{CHCl}_{3}\right)$; IR (ATR) $3442,2970,2946,1739,1612,1513,1440$, 1413, 1365, 1229, 1217, 1175, 1141, 1113, 1082, 1022, 963, 819, $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.20(\mathrm{ddd}, 1 \mathrm{H}, J=11.8 \mathrm{~Hz}), 1.27-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.61(\mathrm{~m}, 3 \mathrm{H})$, $1.74(\mathrm{t}, 3 \mathrm{H}, J=2.5 \mathrm{~Hz}), 1.92-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 3.47-$ $3.55(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{dd}, 1 \mathrm{H}, J=7.3,6.8 \mathrm{~Hz}), 4.03(\mathrm{dddd}, 1 \mathrm{H}, \mathrm{J}=10.4,10.4,4.3,4.3$ $\mathrm{Hz}), 4.18-4.26(\mathrm{~m}, 3 \mathrm{H}), 4.92(\mathrm{~d}, 1 \mathrm{H}, J=15.3 \mathrm{~Hz}), 6.86($ app. d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.18($ app. d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.4,18.8,24.9,34.7,36.9,40.1,46.1,47.7,53.5$, $55.3,64.3,69.8,75.9,78.6,101.8,114.2,128.4,128.9,159.2$; MS (EI) m / z (rel. intensity): 417 (0.5), 211 (51), 193 (7), 179 (12), 161 (21), 151 (7), 137 (64), 133 (43), 121 (100), 119 (60), 111 (18), 109 (13), 103 (15), 95 (34), 93 (11), 91 (15), 71 (11); HRMS (ESI) m/z 440.2046 (M + $\mathrm{Na})^{+}$; calcd. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{6}+\mathrm{Na}$: 440.2049.

(+)-(S)-3-(4-Methoxybenzyl)-4-((2R,4S,6R)-tetrahydro-4-hydroxy-2-methoxy-6-((S)-3-methylhex-4-ynyl)-2H-pyran-2-yl)thiazolidin-2-one (58). $[\alpha]_{D}^{20}=+57.2\left(\mathrm{c} 0.95, \mathrm{CHCl}_{3}\right)$. IR (neat) $3433,2970,2943,1672,1512,1029 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 5.23(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.01(\mathrm{~m}, 1 \mathrm{H})$, $3.94(\mathrm{dd}, J=8.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.31(\mathrm{~m}$, $2 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{ddd}, \mathrm{J}=12.8,4.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.98$ (dt, $J=12.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~d}, ~ J=2.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.73-1.15(\mathrm{~m}, 7 \mathrm{H}), 1.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3$ (C), $159.0(\mathrm{C}), 128.6(\mathrm{C}), 128.5(\mathrm{CH}), 114.1(\mathrm{CH}), 102.4$ (C), $82.2(\mathrm{C}), 76.0(\mathrm{C}), 69.9(\mathrm{CH}), 64.6(\mathrm{CH}), 56.9(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 47.7\left(\mathrm{CH}_{3}\right), 46.7\left(\mathrm{CH}_{2}\right)$, $40.0\left(\mathrm{CH}_{2}\right)$, $37.7\left(\mathrm{CH}_{2}\right)$, $33.3\left(\mathrm{CH}_{2}\right), 32.8\left(\mathrm{CH}_{2}\right)$, $26.2\left(\mathrm{CH}_{2}\right), 25.9(\mathrm{CH}), 21.4\left(\mathrm{CH}_{3}\right), 3.5\left(\mathrm{CH}_{3}\right)$. HRMS (ESI+): calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NNaO}_{5} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$: 470.1975; found 470.1977.

Diyne Formations

The synthesis of diyne $\mathbf{1 1}$ en route to Lat-B followed the previously described route (1).

Analogues by Esterification with Inversion of Configuration.
(2R,4R,6R)-6-(4-Hexynyl)-2-methoxy-2-[(4S)-3-(4-methoxybenzyl)-2-oxo-1,3-thiazolidin-4-yl]tetrahydro-2H-pyran-4-yl (Z)-2-octen-6-ynoate (59). To a solution of alcohol 10α (49 mg ,
 0.11 mmol) in benzene (5 ml) was added the acid $24(30 \mathrm{mg}, 0.22 \mathrm{mmol})$, triphenylphosphine ($286 \mathrm{mg}, 1.1 \mathrm{mmol}$) and DEAD ($85 \mu \mathrm{~L}, 0.55 \mathrm{mmol}$) at room temperature. The reaction was allowed to stir overnight before the solvent was evaporated and the residue purified by flash chromatography ($4: 1 \& 8: 1$, hexane:EtOAc) to give the title compound as a colorless oil
(38 mg, 61\%). $[\alpha]_{D}^{20}=+33\left(c 0.18, \mathrm{CHCl}_{3}\right)$; IR (ATR) 2919, 1742, 1708, 1671, 1611, 1512, 1443, 1402, 1371, 1286, 1240, 1195, 1170, 1122, 1090, 1030, 821, $759 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.20(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.75-189(\mathrm{~m}, 10 \mathrm{H}), 1.94(\mathrm{dd}, 1 \mathrm{H}, J=15.0,4.3 \mathrm{~Hz}), 2.13(\mathrm{ddd}$, $1 \mathrm{H}, J=15.0,1.9,1.9 \mathrm{~Hz}), 2.24-2.34(\mathrm{~m}, 3 \mathrm{H}) 2.41-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{dd}, 2 \mathrm{H}, J=7.2,1.7 \mathrm{~Hz})$ $3.09(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 3.78-3.84(\mathrm{~m}, 4 \mathrm{H}), 3.88-3.96(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.34(\mathrm{~m}, 3 \mathrm{H})$, $5.12(\mathrm{~d}, 1 \mathrm{H}, J=14.3 \mathrm{~Hz}), 5.21-5.26(\mathrm{~m}, 1 \mathrm{H}), 5.82(\mathrm{dd}, 1 \mathrm{H}, J=11.6,1.7 \mathrm{~Hz}), 6.30(\mathrm{dd}, 1 \mathrm{H}, J=$ $11.6,7.3 \mathrm{~Hz}$), 6.89 (app. d, $2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}$) 7.27 (app. d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.5,3.6,18.6,21.9,25.4,26.3,28.5,30.2,33.5,34.2,34.8,47.5(2 \mathrm{x}), 55.3,59.2,66.1$, $66.2,76.4$ (2x), 78.1, 83.3, 101.7, 114.1 (2x), 121.3, 128.9, 129.9 (2 x), 147.9, 159.2, 165.9, 173.2; MS (EI) m/z (rel. intensity): 398 (2), 345 (18), 207 (49), 175 (21), 147 (27), 133 (32), 121 (100), 93 (11), 91 (11); HRMS (EI) $m / z 590.2552(\mathrm{M}+\mathrm{Na})^{+}$; calcd. for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{NO}_{6} \mathrm{~S}+\mathrm{Na}$: 590.2552 .
(2R,4R,6R)-2-Methoxy-2-[(4S)-3-(4-methoxybenzyl)-2-oxo-1,3-oxazolidin-4-yl]-6-[(3S)-3-methyl-4-hexynyl]tetrahydro-2H-pyran-4-yl (Z)-2-octen-6-ynoate (60). Prepared as described

 above from alcohol 19 ($100 \mathrm{mg}, 0.23 \mathrm{mmol}$) and acid $24(95 \mathrm{mg}, 0.69 \mathrm{mmol})$ as a colorless syrup ($53 \mathrm{mg}, 42 \%$). $[\alpha]_{D}^{20}=+60(c$ $0.05, \mathrm{CHCl}_{3}$); IR (ATR) 2962, 1748, 1712, $1611,1512,1414,1366,1288,1229,1166$, 1097, 1072, 1022, 865, 801, 766, $720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.21(\mathrm{~d}, 3 \mathrm{H}$, $J=6.7 \mathrm{~Hz}), 1.42-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.92$ $(\mathrm{m}, 10 \mathrm{H}), 1.98(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 2.24-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.49(\mathrm{~m} 1 \mathrm{H}), 2.83(\mathrm{dd}, 2 \mathrm{H}, J=$ $7.3,1.6 \mathrm{~Hz}$), 3.09 (s, 3H), 3.79 (dd, 1H, $J=9.6,5.3 \mathrm{~Hz}$), $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.89-3.97(\mathrm{~m}, 1 \mathrm{H}), 4.12$ (app. t, 1H, $J=9.5 \mathrm{~Hz}$), $4.18(\mathrm{dd}, 1 \mathrm{H}, J=9.5,5.3 \mathrm{~Hz}), 4.24(\mathrm{~d}, 1 \mathrm{H}, J=14.3 \mathrm{~Hz}), 4.81(\mathrm{~d}, 1 \mathrm{H}, J$ $=14.3 \mathrm{~Hz}), 5.22-5.27(\mathrm{~m}, 1 \mathrm{H}), 5.82(\mathrm{dd}, 1 \mathrm{H}, J=11.6,1.6 \mathrm{~Hz}), 6.31(\mathrm{dd}, 1 \mathrm{H}, J=11.6,7.3 \mathrm{~Hz})$, 6.90 (app. d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$), 7.33 (app d., $2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.0$, $3.4,3.6,18.5,21.8,26.2,28.5,29.3,33.3,34.1,34.7,46.7,47.9,55.3,56.2,63.0,65.9,66.0$, $76.3,78.0,83.2,100.2,114.0,121.1,128.3,130.3,145.0,159.0,159.3,165.8$; MS (EI) m/z (rel.
intensity): 382 (4), 345 (17), 225 (4), 207 (49), 175 (18), 147 (26), 133 (28), 121 (100); HRMS (ESI) $m / z 574.2780(\mathrm{M}+\mathrm{Na})^{+}$; calcd. for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{NO}_{7}+\mathrm{Na}$: 574.2780.
(2R,4R,6R)-6-(4-Hexynyl)-2-methoxy-2-[(4S)-3-(4-methoxybenzyl)-2-oxo-1,3-oxazolidin-4-yl]tetrahydro-2H-pyran-4-yl (Z)-2-octen-6-ynoate (61). Prepared as described above from
 alcohol $21(100 \mathrm{mg}, 0.24 \mathrm{mmol})$ and acid 24 ($133 \mathrm{mg}, 0.96 \mathrm{mmol}$). Colorless syrup ($83 \mathrm{mg}, 65 \%$). $[\alpha]_{D}^{20}=+39$ (c 0.16, CHCl_{3}); IR (ATR) 2919, 1747, 1712, 1611, 1513, 1437, 1414, 1368, 1230, $1165,1130,1098,1073,1036,919,820$, $766,753,731 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.44-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.766(\mathrm{t}, 3 \mathrm{H}$, $J=2.5 \mathrm{~Hz}), 1.776(\mathrm{t}, 3 \mathrm{H}, J=2.5 \mathrm{~Hz}), 1.79-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.97(\mathrm{ddd}, 1 \mathrm{H}, J=15.0,1.8,1.8 \mathrm{~Hz})$, $2.20-2.31(\mathrm{~m}, 4 \mathrm{H}), 2.82(\mathrm{ddd} 2 \mathrm{H}, \mathrm{J}=7.2,1.6 \mathrm{~Hz}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{dd}, 1 \mathrm{H}, J=9.7,5.3 \mathrm{~Hz})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.90-3.98(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{app} . \mathrm{t}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 4.18(\mathrm{dd}, 1 \mathrm{H}, J=9.5,5.3 \mathrm{~Hz}), 4.23$ $(\mathrm{d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}), 4.79(\mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}), 5.20-5.25(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{dd}, 1 \mathrm{H}, J=11.6,1.7$ $\mathrm{Hz}), 6.31(\mathrm{dd}, 1 \mathrm{H}, J=11.6,7.3 \mathrm{~Hz}), 6.88(\operatorname{app} . \mathrm{d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.29(\operatorname{app} . \mathrm{d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.5,3.6,18.6,18.9,25.3,28.6,29.4,34.7,35.3,46.8,47.9,55.3$, $56.4,63.1,65.9,66.0,76.2,76.4,78.1,78.6,100.3,114.1,121.2,128.4,130.2,148.2,159.0$, 159.4, 165.8; MS (EI) m/z (rel. intensity): 368 (5), 331 (20), 211 (4), 193 (41), 161 (15), 133 (30), 121 (100), 119 (21), ; HRMS (ESI) $m / z 560.2623(\mathrm{M}+\mathrm{Na})^{+}$; calcd. for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{NO}_{7}+\mathrm{Na}$: 560.2624 .

(+)-(Z)-(2R,4R,6R)-2-((S)-3-(4-methoxybenzyl)-2-oxothiazolidin-4-yl)-tetrahydro-2-methoxy-6-((S)-3-methylhex-4-ynyl)-2H-pyran-4yl 3-methyloct-2-en-6-ynoate (62). $[\alpha]_{D}^{20}=+59.0$ (c $1.04, \mathrm{CHCl}_{3}$). IR (neat) 2973, 1704, 1676, 1513, $1082 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.15$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{~d}, J=1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.24-5.11(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=9.4,3.8$
$\mathrm{Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.41-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 2.89-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.29(\mathrm{~m}, 3 \mathrm{H})$, $2.03(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.86-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.74(\mathrm{~m}, 6 \mathrm{H}), 1.73-$ $1.34(\mathrm{~m}, 5 \mathrm{H}), 1.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.0(\mathrm{C}), 165.7(\mathrm{C}), 159.0$ (C), $158.0(\mathrm{C}), 128.8(\mathrm{C}), 128.6(\mathrm{CH}), 117.8(\mathrm{CH}), 114.1(\mathrm{CH}), 100.6(\mathrm{C}), 83.3(\mathrm{C}), 78.5(\mathrm{C})$, $77.2(\mathrm{C}), 76.2(\mathrm{C}), 76.0(\mathrm{C}), 65.5(\mathrm{CH}), 65.4(\mathrm{CH}), 57.6(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 47.8\left(\mathrm{CH}_{3}\right), 46.9$ $\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{CH}_{2}\right), 32.8\left(\mathrm{CH}_{2}\right), 32.7\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 26.0(\mathrm{CH}), 25.6$ $\left(\mathrm{CH}_{3}\right)$, $21.4\left(\mathrm{CH}_{3}\right)$, $17.9\left(\mathrm{CH}_{2}\right), 3.5\left(\mathrm{CH}_{3}\right)$. HRMS (ESI+): calcd. for $\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{NnaO}_{6} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$: 604.2705; found 604.2709.

(+)-(Z)-(2R,4R,6R)-2-((R)-3-(4-Methoxybenzyl)-2-oxo-oxazolidin-4-yl)-6-(hex-4-ynyl)-

 tetrahydro-2-methoxy-2H-pyran-4-yl oct-2-en-6-ynoate (63). $[\alpha]_{D}^{20}=+57.7$ (c 1.02, CHCl_{3}). IR (neat) 2920, 1749, 1709, 1513, $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{dt}, J=15.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $5.88(\mathrm{dt}, J=15.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=$ $15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.08(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.83$ $(\mathrm{m}, 1 \mathrm{H}), 3.83-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.37(\mathrm{~m}$, $2 \mathrm{H}), 2.35-2.27$ (m, 2H), 2.15-2.08 (m, 2H), 1.96 (dt, $J=15.2,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.86-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{t}, J=2.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.64(\mathrm{dd}, J=15.2,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.41(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.7(\mathrm{C}), 159.2(\mathrm{C}), 159.0(\mathrm{C}), 147.4(\mathrm{CH}), 129.0(\mathrm{CH}), 128.5(\mathrm{C}), 122.5(\mathrm{CH})$, $114.1(\mathrm{CH}), 99.9(\mathrm{C}), 78.5(\mathrm{C}), 77.5(\mathrm{C}), 76.6(\mathrm{C}), 75.9(\mathrm{C}), 66.6(\mathrm{CH}), 65.3(\mathrm{CH}), 64.2\left(\mathrm{CH}_{2}\right)$, $55.2\left(\mathrm{CH}_{3}\right), 54.2(\mathrm{CH}), 47.8\left(\mathrm{CH}_{3}\right), 46.2\left(\mathrm{CH}_{2}\right), 34.6\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right)$, $24.9\left(\mathrm{CH}_{2}\right)$, $18.8\left(\mathrm{CH}_{2}\right), 17.9\left(\mathrm{CH}_{2}\right), 3.4\left(\mathrm{CH}_{3}\right), 3.4\left(\mathrm{CH}_{3}\right)$. HRMS (ESI+): calcd. for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{NNaO}_{7}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$: 560.2624; found 560.2621.

Compound 64. Colorless syrup ($38 \mathrm{mg}, 52 \%$). $[\alpha]_{D}^{20}=+32.6$ (c $0.49, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (neat) 2950, $2918,1710,1673,1611,1585,1513,1248,1216,1196,1172,1096,824,664 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.27(\mathrm{dt}, J=11.6,7.4 \mathrm{~Hz}, 1 \mathrm{H})$,
 $5.76(\mathrm{dt}, J=11.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.29(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=8.0,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.19(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{qt}, J=7.2,1.8 \mathrm{~Hz}$, 2 H), 2.28-2.17 (m, 4H), 2.07 (dt, $J=14.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=$ $14.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.67-$ $1.49(\mathrm{~m}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 169.2(\mathrm{C}), 166.4(\mathrm{C})$, 159.9 (C), 148.4 (CH), 130.4 (2x CH), 129.7 (C), 121.9 (CH), 114.7 ($2 x$ CH), 102.3 (C), 79.3 (C), 78.7 (C), 76.9 (C), 76.6 (C), $66.8(\mathrm{CH}), 66.7$ $(\mathrm{CH}), 60.1(\mathrm{CH}), 56.0\left(\mathrm{CH}_{3}\right), 48.1\left(\mathrm{CH}_{3}\right), 48.0\left(\mathrm{CH}_{2}\right), 36.0\left(\mathrm{CH}_{2}\right), 35.3\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right), 29.3$ $\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 19.5\left(\mathrm{CH}_{2}\right), 19.2\left(\mathrm{CH}_{2}\right), 4.0\left(\mathrm{CH}_{3}\right), 3.9\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\mathrm{rel}$. intensity): (\%) 384 (3), 331 (21), 193 (39), 161 (15), 133 (28), 121 (100), 93 (10), 91 (11), 77 (8), 55 (7). HRMS (ESI +): calcd. for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{NNaO}_{6} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$: 576.2396; found 576.2390.

Compound 65. Colorless syrup ($32 \mathrm{mg}, 32 \%$). $[\alpha]_{D}^{20}=+30.0\left(\mathrm{c} 0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.20(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=$ $14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=9.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$,
 3.25 (dd, $J=11.8,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=11.8,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.10-$ 2.05 (m, 6H), 1.84 (dd, $J=15.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H})$, $1.72(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.30(\mathrm{~m}, 11 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 173.7(\mathrm{C}), 173.4(\mathrm{C}), 160.0(\mathrm{C}), 130.4(2 \mathrm{CH}), 129.8$ (CH), 114.7 (2CH), 102.3 (C), 79.8 (C), 79.3 (C), 76.4 (C), $75.9(\mathrm{C}), 66.9(\mathrm{CH}), 66.7(\mathrm{CH}), 60.1(\mathrm{CH}), 56.0\left(\mathrm{CH}_{3}\right), 48.1$ $\left(\mathrm{CH}_{3}\right), 48.0\left(\mathrm{CH}_{2}\right), 36.0\left(\mathrm{CH}_{2}\right), 35.1\left(\mathrm{CH}_{2}\right), 35.4\left(\mathrm{CH}_{2}\right), 30.6$ $\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 19.5\left(\mathrm{CH}_{2}\right), 19.3\left(\mathrm{CH}_{2}\right), 4.0$ $\left(\mathrm{CH}_{3}\right), 3.9\left(\mathrm{CH}_{3}\right)$. MS (EI) m/z (rel. intensity): (\%) 384 (4), 361 (42), 211 (37), 193 (90), 179
(13), 161(33), 133 (72), 121 (100), 109 (47). HRMS (ESI+): calcd. for $\mathrm{C}_{33} \mathrm{H}_{46} \mathrm{NO}_{6} \mathrm{~S}_{1}\left(\mathrm{M}^{+}+\mathrm{H}\right)$: 584.3046; found 584.3049.

Esterifications with Retention of Stereochemistry.

Compound 66. To a solution of $\mathbf{1 0 \beta}(18 \mathrm{mg}, 0.040 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ were added acid 25 ($6 \mathrm{mg}, 0.040 \mathrm{mmol}$), DMAP ($15 \mathrm{mg}, 0.121 \mathrm{mmol}$), and EDCI•HCl ($23 \mathrm{mg}, 0.121 \mathrm{mmol}$). Two additional portions of acid $\mathbf{2 5}$ (6 mg each) were added after stirring for 1 and 2 h , respectively.
 After stirring over night, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and extracted with aq. HCl (10\%). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic phases were successively washed with aq. NaOH (10\%), aq. HCl (10\%), sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and brine. After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent was evaporated and the residue was purified by flash chromatography (ethyl acetate/hexane $1 / 5$) to give diyne 66 as a colorless oil ($18 \mathrm{mg}, 78 \%$). $[\alpha]_{D}^{20}=+50.7^{\circ}(\mathrm{c}=0.9$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (ATR) 2943, 1727, 1673, 1512, 1247, 1092, $1032 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 1.18(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.4-1.9(\mathrm{~m}, 17 \mathrm{H}), 2.06-2.16(\mathrm{~m}, 3 \mathrm{H}), 2.29(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5$ Hz), 2.39-2.48 (m, 1H), 3.08 (s, 3H), 3.20-3.30 (m, 2H), 3.78-3.82 (m, 1H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.89-$ $3.94(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}), 5.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.4 \mathrm{~Hz}), 5.07-5.11(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~d}$, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.25(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 3.2,3.3,18.4,21.6$, $24.2,25.4,26.2,28.5,29.9,33.4,34.1,34.3,34.7,47.3,47.4,55.3,59.4,66.1,66.4,75.5,76.1$, 83.3, 101.6, 114.0, 129.0, 129.8, 159.2, 172.7, 172.8; HRMS: $\left(\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{2} \mathrm{~S}_{1}, \mathrm{M}+\mathrm{Na}\right)$ calcd.: 592.270880, found: 592.27117.

Ring-Closing Alkyne Metathesis Reactions (RCAM)

The RCAM leading to Lat-A and Lat-B are described in refs. 1 and 2. For the formation of the "bare macrocycle" 36 by RCAM with $[(t \mathrm{Bu})(\mathrm{Ar}) \mathrm{N}]_{3} \mathrm{Mo}(29) / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the catalyst, see ref. 8 .
(4R)-3-(4-Methoxybenzyl)-4-[(1R,10S,13R,15R)-15-methoxy-10-methyl-3-oxo-2,14-dioxabicyclo[11.3.1]heptadec-4-en-8-yn-15-yl]-1,3-thiazolidin-2-one (67). Argon was bubbled
 through a toluene ($62 \mathrm{ml}, 0.001 \mathrm{M}$) solution of diyne $59(35 \mathrm{mg}, 61.6 \mu \mathrm{~mol})$ for 1 h . Schrock's catalyst $(t \mathrm{BuO})_{3} \mathrm{~W} \equiv \mathrm{CCMe}_{3}$ (28) was added ($9 \mathrm{mg}, 30 \mathrm{~mol} \%$) and the reaction stirred at $80^{\circ} \mathrm{C}$ for 2.5 h . Air was bubbled through the reaction for 10 min before the solvent was vaporated. The residue was purified by flash chromatography ($4: 1$, hexane:EtOAc) to give cycloalkyne 67 as a colorless solid ($13 \mathrm{mg}, 41 \%$). $[\alpha]_{D}^{20}=+43\left(c 0.09, \mathrm{CHCl}_{3}\right)$; IR (film) 3059, 3031, 2961, 2933, 2874, 2836, 1702, 1667, 1610, 1584, 1512, 1449, 1403, 1374, 1356, 1326, 1290, 1247, 1215, 1197, 1173, 1125, 1091, 1049, 1031, 976, 829, 733, $661 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.15(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}$), 1.33-1.50 (m, 2H), 1.72-1.90 (m, 3H), 1.98 (dd, $1 \mathrm{H}, \mathrm{J}=15.0,4.3 \mathrm{~Hz}), 2.09-2.15(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=14.3 \mathrm{~Hz}), 2.16-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.55(\mathrm{~m}, 3 \mathrm{H})$, $3.16(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.37-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.87(\mathrm{~m}, 1 \mathrm{H}), 4.30$ $(\mathrm{d}, 1 \mathrm{H}, J=14.2 \mathrm{~Hz}), 4.90-4.97(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~d}, 1 \mathrm{H}, J=14.2 \mathrm{~Hz}), 5.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.81(\mathrm{~d}, 1 \mathrm{H}, J$ $=11.8 \mathrm{~Hz}), 6.21(\mathrm{dd}, 1 \mathrm{H}, J=11.8,6.8 \mathrm{~Hz}), 6.87(\operatorname{app} . \mathrm{d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.24(\operatorname{app} . \mathrm{d}, 2 \mathrm{H}, J=$ $8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.1,22.2,25.3,26.7,28.2,30.0,30.8,33.7,34.3,47.4$, $47.5,55.3,58.9,65,3,67.2,80.6,85.9,101.9,114.0,122.9,128.8,130.1,146.0,159.1,166.1$, 173.0; MS (EI) m/z (rel. intensity): 482 (0.5), 291 (100), 273 (24), 241 (18), 231 (9), 223 (6), 217 (6), 213 (15), 199 (22), 189 (19), 145 (10), 121 (93), 91 (12), 79 (11), 77 (10), 55 (13); HRMS (ESI) $m / z 536.2079(\mathrm{M}+\mathrm{Na})^{+}$; calcd. for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NO}_{6} \mathrm{~S}+\mathrm{Na}: 536.2082$.
(4S)-3-(4-Methoxybenzyl)-4-[(1R,10S,13R,15R)-15-methoxy-10-methyl-3-oxo-2,14-dioxabicyclo[11.3.1]heptadec-4-en-8-yn-15-yl]-1,3-oxazolidin-2-one (68). Prepared analogously from diyne $\mathbf{6 0}(45 \mathrm{mg}, 82 \mu \mathrm{~mol})$. Flash chromatography ($1: 1$,
 hexane:EtOAc) afforded cycloalkyne 68 as a white solid ($36 \mathrm{mg}, 87 \%$). $[\alpha]_{D}^{20}=$ +44 (c 0.09, CHCl_{3}); IR (ATR) 2955, 1733, 1693, 1609, 1509, 1444, 1413, $1397,1375,1346,1281,1217,1170,1130,1092,1073,1025,945,889,876$, $828,769,751,720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.16(\mathrm{~d}, 3 \mathrm{H}, J=7.0$ Hz), 1.26-1.36 (m, 2H), 1.39-1.49 (m, 1H), 1.72-1.91 (m, 4H), 2.05 (ddd, 1H, $J=16.9,1.9 \mathrm{~Hz}), 2.09-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.46(\mathrm{~m}, 2 \mathrm{H})$, 2.47-2.56 (m, 1H), 3.16 (s, 3H), 3.33-3.46 (m, 1H), 3.80-3.86 (m, 1H), 3.82 (s, 3H), $4.12(\mathrm{~d}, 1 \mathrm{H}$, $J=9.5 \mathrm{~Hz}), 4.18(\mathrm{dd}, 1 \mathrm{H}, J=9.5,5.4 \mathrm{~Hz}), 4.27(\mathrm{~d}, 1 \mathrm{H}, J=14.3 \mathrm{~Hz}), 4.77(\mathrm{~d}, 1 \mathrm{H}, J=14.3 \mathrm{~Hz})$, 4.91-4.99 (m, 1H), 5.3-5.35 (m, 1H), $5.81(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 6.21(\mathrm{ddd}, 1 \mathrm{H}, J=11.7,10.5,6.8$ $\mathrm{Hz}), 6.79$ (app. d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$), 7.22 (app. d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $19.2,22.3,26.8,28.4,29.4,30.9,33.8,34.3,46.8,48.0,55.4,56.3,63.1,65.3,67.2,80.7,86.0$, 100.7, 114.1, 122.9, 128.5, 130.4, 146.1, 159.0, 159.4, 166.2; MS (EI) m/z (rel. intensity): 466 (1), 291 (81), 273 (18), 241 (14), 223 (5), 213, (11), 199 (19), 121 (100); HRMS (ESI) m/z $520.2312(\mathrm{M}+\mathrm{Na})^{+}$; calcd. for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NO}_{7}+\mathrm{Na}$: 520.2311.
(4S)-3-(4-methoxybenzyl)-4-[(1R,13R,15R)-15-methoxy-3-oxo-2,14-dioxabicyclo[11.3.1] heptadec-4-en-8-yn-15-yl]-1,3-oxazolidin-2-one (69). Prepared analogously from diyne 61 (50 $\mathrm{mg}, 93 \mu \mathrm{~mol}$). Flash chromatography ($2: 1$, hexane:EtOAc) afforded
 cycloalkyne 69 as a cream solid ($34 \mathrm{mg}, 76 \%$). $[\alpha]_{D}^{20}=+59\left(c 0.1, \mathrm{CHCl}_{3}\right)$; IR (ATR) 2931, 2862, 1740, 1694, 1611, 1514, 1446, 1424, 1410, 1355, 1323, $1292,1245,1208,1142,1114,1093,1068,1028,998,963,914,894,844$, $826,811,765,719 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.37(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=$ 14.2, 11.7, 2.5 Hz), 1.59-1.74 (m, 2H), 1.76-1.97 (m, 3H), 2.05 (m, 2H), 2.16-2.25 (m, 1H), 2.27-2.32 (m, 2H), 2.36-2.45 (m, 2H), $3.19(\mathrm{~s}, 3 \mathrm{H}), 3.35-$ $3.45(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{dd}, J=9.6,5.3 \mathrm{~Hz}), 4.12(\mathrm{dd}, 1 \mathrm{H}, J=9.6,9.5 \mathrm{~Hz}), 4.19(\mathrm{dd}$, $1 \mathrm{H}, J=9.4,5.3 \mathrm{~Hz}), 4.28(\mathrm{~d}, 1 \mathrm{H}, J=14.3 \mathrm{~Hz}), 4.78(\mathrm{~d}, 1 \mathrm{H}, J=14.3 \mathrm{~Hz}), 4.99(\mathrm{dd}, 1 \mathrm{H}, J=11.9$, $6.2 \mathrm{~Hz}), 5.30-5.35(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 6.20(\mathrm{ddd}, 1 \mathrm{H}, J=11.7,11.0,6.9 \mathrm{~Hz})$,
6.87 (app. d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$), 7.29 (app. d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.2$, $19.8,22.3,28.4,29.4,34.3,36.5,46.8,48.1,55.4,56.3,63.1,65.6,67.3,81.1,81.7,100.7,114.1$, $122.9,128.5,130.4,146.1,159.0,159.4,166.2$; MS (EI) m/z (rel. intensity): 452 (1), 278 (18), 277 (100), 259 (16), 227 (22), 217 (5), 203 (5), 199 (18), 185 (17), 183 (2), 181 (5), 177 (3), 175 (15), 167 (5), 159 (8), 157 (8), 134 (4), 131 (10), 121 (95), 117 (7), 91 (14); HRMS (ESI) m/z $506.2158(\mathrm{M}+\mathrm{Na})^{+}$; calcd. for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{NO}_{7}+\mathrm{Na}$: 506.2154.

Compound 70. Prepared analogously from diyne 66. Flash chromatography (ethyl acetate/hexane, 1/4) afforded cycloalkyne 70 as white crystals (8.6 mg , 73% yield). $[\alpha]_{D}^{20}=+64.8^{\circ}\left(c 0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$). IR (ATR) 2933, 1725, 1672, 1512, 1446, 1248, 1093, $1031 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 1.16$ (d, $3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.32-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.85(\mathrm{~m}, 6 \mathrm{H}), 1.92(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $4.3,14.9 \mathrm{~Hz}), 1.91-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{dt}, 1 \mathrm{H}, J=2.3,14.9 \mathrm{~Hz}), 2.18-2.21$ $(\mathrm{m}, 1 \mathrm{H}), 2.25-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.64(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~s}$, $3 \mathrm{H}), 3.21-3.30(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{dd}, 1 \mathrm{H}, J=3.9,8.3 \mathrm{~Hz}), 4.31(\mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz})$, 4.60-4.67 (m, 1H), $5.00(\mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}), 5.14-5.17(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.22$ $(\mathrm{d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 18.7,22.5,24.2,25.5,26.1,28.0,30.1,30.4$, $34.1,34.4,34.8,47.4,47.5,55.3,59.3,65.0,66.4,81.2,84.6,101.9,114.0,129.1,130.0,159.2$, 172.4, 172.6; MS (EI) m/z (rel. intensity): 293 (82), 275 (47), 243 (36), 191 (41), 121 (100).

HRMS: $\left(\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{1} \mathrm{O}_{6} \mathrm{~S}_{1}, \mathrm{M}+\mathrm{H}\right)$ calcd.: 516.241986, found: 516.24222.
(+)-(S)-3-(4-Methoxybenzyl)-4-((Z,1R,10S,13R,15R)-15-methoxy-5,10-dimethyl-3-oxo-2,14-dioxa-bicyclo[11.3.1]heptadec-4-en-8-yn-15-yl)thiazolidin-2-one (71). $[\alpha]_{D}^{]_{D}^{20}=+66.3 ~(c ~ 1.17, ~}$
 CDCl_{3}). IR (neat) 2938, 1697, 1673, 1512, 1276, $1248 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.65(\mathrm{~d}, J$ $=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-5.21(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-4.79(\mathrm{~m}$, $1 \mathrm{H}), 4.24(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=9.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, 3.40-3.26 (m, 3H), 3.13 (s, 3H), 2.48-2.21 (m, 4H), 2.20-2.07 (m, 2H), 2.00 $(\mathrm{dd}, J=15.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.50-$
$1.36(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.9,165.9,159.0,156.2$, $128.9,128.7,119.1,114.1,101.0,86.2,80.9,66.8,65.0,57.7,55.3,47.9,47.0,33.9,33.8,33.3$, 31.2, 21.1, 26.4, 26.3, 25.1, 22.0, 19.0. HRMS (ESI +): calcd. for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{NNaO}_{6} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$: 550.2235; found 550.2239.
(+)-(R)-3-(4-Methoxybenzyl)-4-((Z,1R,13R,15R)-15-methoxy-3-oxo-2,14-dioxa-bicyclo-[11.3.1]heptadec-4-en-8-yn-15-yl)oxazolidin-2-one (72). $[\alpha]_{D}^{20}=+46.2$ (c 1.66, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR
 (neat) 2936, 1750, 1701, $1513 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.27-6.15(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.35-5.26 (m, 1H), 4.95-4.82 (m, 2H), 4.30-4.15 (m, 3H), 3.87 (dd, $J=9.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.35$ $(\mathrm{m}, 2 \mathrm{H}), 2.27-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.61(\mathrm{~m}, 4 \mathrm{H})$, 1.59-1.33 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0,159.2,159.0,146.1$, $129.0,128.5,122.8,114.1,100.2,81.6,80.9,66.8,64.9,64.3,55.3,54.0$, 48.0, 46.2, 35.9, 34.1, 30.7, 28.4, 22.2, 19.6, 19.0. HRMS (ESI+): calcd. for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{NNaO}_{7}\left(\mathrm{M}^{+}+\right.$ $\mathrm{Na})$: 506.2155; found 506.2159.

Compound 73. Colorless syrup ($24 \mathrm{mg}, 71 \%$). $[\alpha]_{D}^{20}=+37.4$ (c $0.74, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (neat) 3031, 2937, 1702, 1671, 1611, 1585, 1512, 1248, 1198, 1034, $831 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ
 $7.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{~m}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~d}$, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}) 3.84(\mathrm{dd}, J=8.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.27-3.20(\mathrm{~m}$, $2 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 2.13$ $(\mathrm{m}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{dd}, J=15.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H}), 1.68-$ $1.56(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{ddd}, \mathrm{J}=15.0,12.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 173.0(\mathrm{C}), 166.3(\mathrm{C}), 159.6(\mathrm{C}), 146.4(\mathrm{CH}), 130.3(2 \mathrm{CH}), 129.4$ (C), $123.0(\mathrm{CH}), 114.3(2 \mathrm{CH}), 102.3(\mathrm{C}), 82.0(\mathrm{C}), 81.3(\mathrm{C}), 67.7(\mathrm{CH}), 66.1(\mathrm{CH}), 59.6(\mathrm{CH})$, $55.6\left(\mathrm{CH}_{3}\right), 47.9\left(\mathrm{CH}_{3}\right), 47.8\left(\mathrm{CH}_{2}\right), 36.8\left(\mathrm{CH}_{2}\right), 34.6\left(\mathrm{CH}_{2}\right), 30.4\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right)$, $22.8\left(\mathrm{CH}_{2}\right), 20.0\left(\mathrm{CH}_{2}\right), 19.4\left(\mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}$ (rel. intensity): 277 (97), 259 (16), 227 (23),

199 (19), 185 (17), 175 (15), 135 (15), 121 (100), 91 (14). HRMS (ESI+): calcd. for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{NO}_{6} \mathrm{~S}_{1}\left(\mathrm{M}^{+}+\mathrm{H}\right)$: 500.2107; found 500.2108.

Compound 74. Colorless syrup ($15 \mathrm{mg}, 58 \%$). $[\alpha]_{D}^{20}=+53.5$ (c $0.65, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=$
 $15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}$, $J=9.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.43$ (ddd, $J=14.7,7.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.14(\mathrm{~m}, 3 \mathrm{H}), 2.11-2.05(\mathrm{~m}$, $1 \mathrm{H}), 1.99(\mathrm{dt}, J=14.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{dd}, J=14.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-$ $1.63(\mathrm{~m}, 7 \mathrm{H}), 1.59-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{ddd}, J=14.4,11.6,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 1.40-1.32 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 173.5$ (C), 173.4 (C), $160.0(\mathrm{C}), 130.4(2 \mathrm{CH}), 129.8(\mathrm{CH}), 114.7(2 \mathrm{CH}), 102.4(\mathrm{C}), 82.4(\mathrm{C}), 80.2$ (C), $66.8(\mathrm{CH}), 65.7(\mathrm{CH}), 60.2(\mathrm{CH}), 56.0\left(\mathrm{CH}_{3}\right), 48.3\left(\mathrm{CH}_{3}\right), 48.2\left(\mathrm{CH}_{2}\right), 36.0\left(\mathrm{CH}_{2}\right), 35.1$ $\left(\mathrm{CH}_{2}\right), 34.0\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{2}\right), 18.8$ $\left(\mathrm{CH}_{2}\right), 18.1\left(\mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}$ (rel. intensity): (\%) 498 (1), 307 (100), 289 (11), 275 (16), 257 (28), 121 (98). HRMS (ESI+): calcd. for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{NNaO}_{6} \mathrm{~S}_{1}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$: 552.2396; found 552.2399.

Lindlar Hydrogenations

(4R)-3-(4-Methoxybenzyl)-4-[(1R,10S,13R,15R)-15-methoxy-10-methyl-3-oxo-2,14-dioxabicyclo[11.3.1]heptadeca-4,8-dien-15-yl]-1,3-thiazolidin-2-one (75). Lindlar catalyst was
 added to a solution of cycloalkyne $67(13 \mathrm{mg}, 25$ $\mu \mathrm{mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ and the resulting mixture was stirred vigorously under a hydrogen atmosphere (1 atm) overnight. The reaction conversion was 40% and so the catalyst and hydrogen were re-charged. After 4 days of repetitive recharging, the reaction was filtered through Celite, the filtrate was evaporated and the residue purified by flash chromatography (hexane:EtOAc, $10: 1 \rightarrow 8: 1 \rightarrow 6: 1$) to give alkene 75 as a colorless oil ($8.5 \mathrm{mg}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR
($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.99(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 1.26-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.76$ $(\mathrm{m}, 2 \mathrm{H}), 1.84(\mathrm{dd}, 1 \mathrm{H}, J=13.2,3.9 \mathrm{~Hz}), 1.91(\mathrm{dd}, 1 \mathrm{H}, J=15.0,3.7 \mathrm{~Hz}), 1.99-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.23$ $(\mathrm{dd}, 1 \mathrm{H}, J=11.4,5.7 \mathrm{~Hz}), 2.29-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{dd}, 1 \mathrm{H}, J=12.1,3.4 \mathrm{~Hz}), 2.72-2.82(\mathrm{~m}, 1 \mathrm{H})$, $3.14(\mathrm{~s}, 3 \mathrm{H}), 3.18-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.84(\mathrm{~m}, 4 \mathrm{H}), 4.23-4.33(\mathrm{~m}, 2 \mathrm{H}), 5.05-5.14(\mathrm{~m}, 2 \mathrm{H}), 5.20$ (br s, 1H), 5.33 (ddd, 1H, $J=11.3,11.2,3.2 \mathrm{~Hz}$), $5.78(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 6.20(\mathrm{ddd}, 1 \mathrm{H}, J=$ $11.7,11.2,6.3 \mathrm{~Hz}$), 6.88 (app. d, 2H, $J=8.6 \mathrm{~Hz}$), 7.23 (app. d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.2,22.7,25.4,27.4,29.3,29.9,31.0,31.5,32.4,35.8,47.6,47.7,55.4,59.2$, $63.4,67.7,102.4,114.1,122.1,127.9,128.9,130.0,130.2,135.1,144.6,159.2,166.2,173.2$.

(4S)-3-(4-Methoxybenzyl)-4-[(1R,10S,13R,15R)-15-methoxy-10-methyl-3-oxo-2,14-

 dioxabicyclo[11.3.1]heptadeca-4,8-dien-15-yl]-1,3-oxazolidin-2-one (76). Lindlar catalyst was added to a solution of the cyclic alkyne $68(30 \mathrm{mg}$, $60 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ and the resulting mixture was stirred vigorously under a hydrogen atmosphere (1 atm) overnight. The reaction was filtered through Celite and the filtrate was evaporated. Purification of the residue by flash chromatography ($2: 1$, hexane:EtOAc) gave the over-reduced product 76 as a colorless oil (23 mg , $76 \%) \cdot[\alpha]_{D}^{20}=+95\left(c 0.08, \mathrm{CHCl}_{3}\right) ;$ IR (ATR) 2930, 2861, 1749, 1727, 1612, 1513, 1438, 1366, $1325,1242,1226,1174,1152,1131,1112,1092,1041,1023,976,960,845,820,752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.97(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.20-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.44-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.71-$ $1.93(\mathrm{~m}, 7 \mathrm{H}), 2.12-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{dd}, 1 \mathrm{H}, J=14.9,4.7 \mathrm{~Hz}), 2.68-2.78(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H})$, $3.84(\mathrm{dd}, 1 \mathrm{H}, ~ J=9.8,5.2 \mathrm{~Hz}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.95-4.03(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.20($ app. t, $1 \mathrm{H}, J=9.5 \mathrm{~Hz}$), 4.21-4.27 (m 2H), $4.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.4 \mathrm{~Hz}), 5.03(\mathrm{app} . \mathrm{t}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz}), 5.22-5.27(\mathrm{~m}, 1 \mathrm{H})$, $5.44(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=11.1,4.7 \mathrm{~Hz}), 6.88$ (app. d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$), 7.29 (app. d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 22.0,26.3,28.5,28.8,29.8,30.2,31.3,34.8,34.9,46.9,48.1,55.4$, $56.6,62.8,63.1,66.4,100.6,114.1,128.4,128.8,130.3,134.7,159.4,172.7$; MS (EI) m/z (rel. intensity): 470 (3), 295 (100), 263 (15), 245 (33), 121 (85); HRMS (ESI) $m / z 502.2804(\mathrm{M}+\mathrm{H})^{+}$; calcd. for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{NO}_{7}: 502.2804$.

(4S)-3-(4-Methoxybenzyl)-4-[(1R,13R,15R)-15-methoxy-3-oxo-2,14-dioxabicyclo[11.3.1]

heptadec-8-en-15-yl]-1,3-oxazolidin-2-one (77). Prepared as described above using the cyclic
 alkyne 69 ($25 \mathrm{mg}, 52 \mu \mathrm{~mol}$). Flash
chromatography ($3: 1 \rightarrow 2: 1$, hexane:EtOAc) gave the over-reduced product 77 as a glassy solid (20 mg, 80\%). IR (ATR) 2931, 2858, 1748, 1725, $1612,1513,1462,1437,1415,1365,1324,1228$, $1206,1174,1146,1133,1092,1073,1036,974$, 919, 817, 766, 753, $729 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.94(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.35-1.18(\mathrm{~m}$,
$4 \mathrm{H}), 1.65-1.42(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.67(\mathrm{~m}, 6 \mathrm{H}), 2.23-2.10(\mathrm{~m} .2 \mathrm{H}), 2.58(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=15.0,5.5,4.0$ Hz), 2.74-2.66 (m, 1H), 3.21 (s, 3H), 3.80 (s, 3H), 3.83-3.76 (m, 1H), 3.99-3.93 (m, 1H), $4.14(\mathrm{t}$, $1 \mathrm{H}, J=9.7 \mathrm{~Hz}), 4.23-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{~d}, 1 \mathrm{H}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{t}, 1 \mathrm{H}, J=10.7 \mathrm{~Hz}), 5.22$ (br s, 1H), $5.41(\mathrm{td}, 1 \mathrm{H}, J=11.2,4.8 \mathrm{~Hz}), 6.85(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.26(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 21.9,26.2,28.4,28.7,29.7,30.1,31.2,32.2,34.7,34.8,46.8,48.0$, $55.3,56.5,62.7,63.0,66.3,100.4,114.0,128.3,128.8,130.2,134.5,158.9,159.3,172.7$; MS (EI) m/z (rel. intensity): 458 (1), 456 (2), 283 (45), 281 (100) 249 (11), 251 (4), 233 (13), 231 (35), 213 (9), 185 (6), 121 (84).

Compound 78. Prepared as described above from cycloalkyne $70(8 \mathrm{mg}, 0.016 \mathrm{mmol})$. Filtration of the catalyst and evaporation of the solvent provided product 78 in analytically pure form as a
 colorless oil (8 mg , quant.). $[\alpha]_{D}^{20}=+85.5^{\circ}\left(\mathrm{c}=0.8, \mathrm{CHCl}_{3}\right)$. IR (ATR) 2926, $1728,1674,1513,1248,1091,1031 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 0.96$ $(\mathrm{d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 1.18-1.90(\mathrm{~m}, 11 \mathrm{H}), 1.98(\mathrm{~d}, 2 \mathrm{H}, J=3.5 \mathrm{~Hz}), 2.13-2.24$ (m, 2H), 2.51-2.57 (m, 1H), 2.68-2.80 (m, 1H), 3.22 (s, 3H), 3.26-3.35 (m, $2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.9,3.3 \mathrm{~Hz}), 3.96(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $14.4 \mathrm{~Hz}), 5.01(\mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}), 5.02(\mathrm{t}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 5.44(\mathrm{dt}, 1 \mathrm{H}, J=$ $11.0,4.7 \mathrm{~Hz}), 6.88(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.22(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 21.7,25.5,26.2,28.4,28.7,30.1,30.5,31.3,32.3,34.7,34.9,47.5,47.5,55.3$,
$59.5,62.8,66.5,101.9,114.0,128.8,129.0,129.8,134.7,159.3,172.5,172.7$; MS (EI) m / z (rel. intensity): 295 (100), 263 (21), 245 (43), 121 (65). HRMS: $\left(\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{1} \mathrm{O}_{6} \mathrm{~S}_{1}, \mathrm{M}+\mathrm{H}\right)$ calcd.: 518.257636, found: 518.25753.
(+)-(S)-3-(4-Methoxybenzyl)-4-((1R,4Z,8Z,10S,13R,15R)-15-methoxy-5,10-dimethyl-3-oxo-2,14-dioxa-bicyclo[11.3.1]heptadeca-4,8-dien-15-yl)thiazolidin-2-one (79). $[\alpha]_{D}^{20}=+115.8$ (c
 $0.91, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (neat) $2954,1700,1673,1512,1275,1248,1022 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $5.69(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{td}, J=11.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.18-5.13(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{td}, J=10.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, 1H), 4.20-4.08 (m, 1H), 3.90 (dd, $J=9.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (s, 3H), 3.38-3.26 $(\mathrm{m}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 2.79-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{dt}, J=$ $15.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~d}, J=15.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~d}$, $J=15.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.11(\mathrm{~m}, 6 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.9,166.2,159.0,153.9,135.2,128.9,128.4,127.7,118.9,114.1,101.3,67.2,63.0,57.9,55.3$, $47.8,46.8,35.6,34.9,32.3,31.5,29.6,26.5,26.2,24.4,22.6,22.0$. HRMS (ESI+): calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{NNaO}_{6} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$: 552.2389; found 552.2396.

(+)-(R)-3-(4-Methoxybenzyl)-4-((1R,4Z,8Z,13R,15R)-15-methoxy-3-oxo-2,14-dioxa-

 bicyclo[11.3.1]heptadeca-4,8-dien-15-yl)oxazolidin-2-one (80). $[\alpha]_{D}^{20}=+53.3$ (c 1.09, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (neat) $2935,1753,1707,1513 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.27-6.15(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.35-5.26(\mathrm{~m}, 1 \mathrm{H}), 4.95-4.82(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.15(\mathrm{~m}, 3 \mathrm{H}), 3.87$ (dd, J $=9.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.35(\mathrm{~m}$, $2 \mathrm{H}), 2.27-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.33$ (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0$ (C), 159.2 (C), 159.0 (C), 145.5 $(\mathrm{CH}), 129.5(\mathrm{CH}), 129.0(\mathrm{CH}), 128.5(\mathrm{C}), 122.0(\mathrm{CH}), 114.1(\mathrm{CH}), 100.4(\mathrm{C})$, $66.9(\mathrm{CH}), 64.2\left(\mathrm{CH}_{2}\right), 62.9(\mathrm{CH}), 55.3(\mathrm{CH}), 54.3\left(\mathrm{CH}_{3}\right), 47.9\left(\mathrm{CH}_{3}\right), 46.2\left(\mathrm{CH}_{2}\right), 34.1\left(\mathrm{CH}_{2}\right)$, $30.8\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2}\right), 21.8\left(\mathrm{CH}_{2}\right)$. HRMS (ESI+): calcd. for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{NNaO}_{7}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$: 508.2311; found 508.2308.Compound 81. Colorless syrup (20 mg , quant.). $[\alpha]_{D}^{20}=+38.0\left(c 0.75, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$). IR (neat) 3030, 2955, 2936, 1709, 1665, 1611, 1585, 1512, 1249, 1196, 1031, $829 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{dt}, J=12.0$,
 $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~d}, \mathrm{~J}=$ $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=9.7,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77$ (s, 3H), 3.26-3.16 (m, 2H), 3.07 (s, 3H), 2.66 (m, 1H), 2.41-2.25 (m, $2 \mathrm{H}), 2.21(\mathrm{dt}, J=15.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.12(\mathrm{~m}, 3 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~m}$, $2 \mathrm{H}), 1.63-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.47$ (ddd, $J=13.9,11.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\sim}{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 171.9(\mathrm{C}), 165.1(\mathrm{C}), 158.5(\mathrm{C}), 144.8(\mathrm{CH}), 129.1(\mathrm{CH})$, $128.9(\mathrm{CH}), 128.3(2 \mathrm{CH}), 127.7(\mathrm{C}), 121.1(\mathrm{CH}), 113.2(2 \mathrm{CH}), 101.4(\mathrm{C}), 66.7(\mathrm{CH}), 62.7$ $(\mathrm{CH}), 58.5(\mathrm{CH}), 54.5\left(\mathrm{CH}_{3}\right), 46.7\left(\mathrm{CH}_{3}\right), 46.6\left(\mathrm{CH}_{2}\right), 33.6\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.1$ $\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right), 23.0\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{2}\right) . \mathrm{m} / \mathrm{z}(\mathrm{EI}) 279$ (100), 261 (9), 247 (8), 229 (34), 201 (10), 133 (11), 121 (87). HRMS (ESI+): calcd. for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{NO}_{6} \mathrm{~S}_{1}\left(\mathrm{M}^{+}+\mathrm{H}\right): 502.2263$; found 502.2265.

Compound 82. Colorless syrup (10 mg , quant.). $[\alpha]_{D}^{20}=+45.3$ (c 0.5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.19(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{~m}, 1 \mathrm{H})$,
 4.98 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ (d, $J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.058 \mathrm{~m}, 1 \mathrm{H}), 3.82$ (dd, $J=8.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.23$ $(\mathrm{m}, 3 \mathrm{H}), 2.03(\mathrm{dt}, J=14.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.88(\mathrm{dd}, J=$ $14.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 2 \mathrm{H})$, 1.46-1.32 (m, 7H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 173.3$ (C), 173.0 (C), $159.6(\mathrm{C}), 131.1(\mathrm{CH}), 130.1(2 \mathrm{CH}), 129.4(\mathrm{CH}), 114.3(2 \mathrm{CH}), 102.0(\mathrm{C})$, $66.3(\mathrm{CH}), 63.8(\mathrm{CH}), 59.8(\mathrm{CH}), 55.6\left(\mathrm{CH}_{3}\right), 47.8\left(\mathrm{CH}_{3}\right), 35.1\left(\mathrm{CH}_{2}\right), 34.7$ $\left(\mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 25.2$ $\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}$ (rel. intensity): 500 (1), 309 (100), 291 (13), 277 (17), 259 (35), 121 (72). HRMS (ESI +): calcd. for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{NNaO}_{6} \mathrm{~S}_{1}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$: 554.2552; found 554.2549.

Latrunculins and Latrunculin Analogues

Latrunculin A (1). For the preparation see ref. 2. $[\alpha]_{D}^{20}=+145\left(\mathrm{c} 0.05 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (ATR) 3302, 2952, 2854, 1670, 1435, 1377, 1351, 1279, 1231, 1190, 1060, 1050, 1029, 985, 953, 904, 865,
 806, 753, 726, 686, $663 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.98(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}$ $=6.31 \mathrm{~Hz}), 1.01-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.98(\mathrm{~m}, 6 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 2.04-2.07$ (m, 1H), 2.23-2.34 (m, 2H), 2.62-2.77 (m, 2H), 2.86-2.95 (m, 1H), 3.37$3.52(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.93(\mathrm{~m}, 2 \mathrm{H}), 4.2-4.3(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.7$, $10.6 \mathrm{~Hz}), 5.42(\mathrm{~m}, 1 \mathrm{H}), 5.65-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H})$, $5.97(\mathrm{dd}, 1 \mathrm{H}, J=10.7,10.6 \mathrm{~Hz}), 6.40(\mathrm{dt}, 1 \mathrm{H}, J=14,12 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.6,24.5,28.7,29.2,30.5,31.0,31.5,31.8,32.7$, $34.9,61.4,62.3,68.2,97.3,117.3,126.0,127.2,131.8,136.5,158.4,165.4,174.8$; MS (EI) m / z (rel. intensity): 403 (28), 385 (15), 335 (41), 334 (23), 333 (100), 327 (13), 315 (15), 301 (17), 285 (10), 205 (11), 175 (11), 170 (14), 159 (11), 147 (14), 135 (12), 133 (14), 131 (14), 121 (19), 119 (15), 117 (16), 109 (11), 107 (25), 105 (19), 93 (30), 91 (22), 81 (30), 79 (41), 55 (25); HRMS (ESI+) m/z 444.18233 (M+Na); calcd. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NaSO}_{5} \mathrm{~N}$: 444.182065.

Latrunculin B (2). CAN ($31 \mathrm{mg}, 0.057 \mathrm{mmol}$) was added to a vigorously stirred suspension of compound $83(12 \mathrm{mg}, 0.023 \mathrm{mmol})^{1}$ in acetonitrile/water ($2: 1,0.5 \mathrm{ml}$). After 20 min the mixture
 became homogeneous and stirring was continued for additional 3 h . The solution was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated, and the residue was purified by flash chromatography (ethyl acetate/hexane, 1/2) to give latrunculin B as a colorless oil ($7 \mathrm{mg}, 78 \%$). $[\alpha]_{D}^{20}=+122^{\circ}(c=0.55$, CHCl_{3}); IR (ATR) 3328, 2952, 1678, 1278, 1092, $1057 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.95(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}), 1.07-2.39(\mathrm{~m}, 11 \mathrm{H}), 1.90(\mathrm{~d}$, $3 \mathrm{H}, J=1.3 \mathrm{~Hz}), 2.60-2.80(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{dd}, 1 \mathrm{H}, J=6.3,11.6 \mathrm{~Hz}), 3.47(\mathrm{dd}, 1 \mathrm{H}, J=8.8,11.6$ $\mathrm{Hz}), 3.81-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.24(\mathrm{br} \mathrm{t}, 1 \mathrm{H}, \mathrm{J}=10.6 \mathrm{~Hz}), 5.05(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=1.5,11.2$
$\mathrm{Hz}), 5.25(\mathrm{dt}, 1 \mathrm{H}, J=3.0,11.2 \mathrm{~Hz}), 5.43-5.46(\mathrm{~m}, 1 \mathrm{H}), 5.68(\mathrm{~d}, 1 \mathrm{H}, J=1.3 \mathrm{~Hz}), 5.77(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.2,24.0,26.9,28.7,28.8,30.9,31.2,31.4,35.3,35.8$, $61.3,62.5,68.7,97.8,117.8,127.4,135.8,154.5,165.3,174.7$.

16-epi-Latrunculin B (3). $[\alpha]_{D}^{24}=+85\left(\mathrm{c} 0.24, \mathrm{CHCl}_{3}\right)\left[\operatorname{lit}[\alpha]_{D}^{24}=+76\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right)\right]$ (9). IR (neat) $3342,2923,2854,1685,1260,1029,796 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.67$ (d, $J=$
 $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.31-5.21(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=11.4,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 5.08-5.00 (m, 1H), 4.39-4.30 (m, 1H), 3.86 (ddd, $J=8.4,8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40$ (dd, $J=11.1,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=11.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.80$ (ddd, $J=12.9,12.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.25-$ $2.12(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.46(\mathrm{~m}, 5 \mathrm{H}), 1.42-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.18-$ $1.09(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 175.1$, $165.9,155.7,135.8,128.3,118.4,97.0,68.1,63.3,63.2,36.0,35.9,32.8,31.6$, 29.9, 29.5, 29.4, 27.1, 24.5, 22.4. HRMS (EI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{SNa}\left(\mathrm{M}^{+}+\mathrm{Na}\right): 418.1664$; found 418.1664.

(4R)-4-[(1R,10S,13R,15R)-15-Hydroxy-10-methyl-3-oxo-2,14-dioxabicyclo[11.3.1]

heptadeca-4,8-dien-15-yl]-1,3-thiazolidin-2-one (30). Prepared analogously; white crystals (2.6
 $\mathrm{mg}, 41 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.93(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.08(\mathrm{ddd}$, $1 \mathrm{H}, J=14.9,11.0,4.0 \mathrm{~Hz}), 1.31-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{dddd}, 1 \mathrm{H}, J=14.4,10.7$, $3.7,3.6 \mathrm{~Hz}), 1.51$ (ddd, $1 \mathrm{H}, J=14.0,11.6,2.3 \mathrm{~Hz}), 1.70(\mathrm{dd}, 1 \mathrm{H}, J=13.4,4.0$ $\mathrm{Hz}), 1.73(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=14.7,3.1 \mathrm{~Hz}), 1.99-2.17(\mathrm{~m}, 3 \mathrm{H}), 2.32(\mathrm{dd}$, $1 \mathrm{H}, J=12.5,4.2 \mathrm{~Hz}$), $2.44(\mathrm{dd}, 1 \mathrm{H}, J=12.5,4.2 \mathrm{~Hz}), 2.61-2.69(\mathrm{~m}, 1 \mathrm{H}), 3.37$ (dd, $1 \mathrm{H}, J=11.7,6.2 \mathrm{~Hz}), 3.44(\mathrm{dd}, 1 \mathrm{H}, J=11.7,8.8 \mathrm{~Hz}), 3.81(\mathrm{dd}, 1 \mathrm{H}, J=8.8$, $6.2 \mathrm{~Hz}), 4.23(\mathrm{brt}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 5.02(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{ddd}, 1 \mathrm{H}), 5.45(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 5.81(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 5.83(\mathrm{NH}, \mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.18(\mathrm{ddd}, 1 \mathrm{H}, J=11.7,11.6,5.7 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.3,27.5,28.6,28.7,31.0,31.1,31.4,31.7,35.4,61.5,62.5,68.8$, 97.8, 121.2, 127.2, 135.8, 144.1, 165.3, 174.9; LCMS (ESI) m/z $785(2,2 \mathrm{M}+\mathrm{Na}), 404$ (100, $\mathrm{M}+\mathrm{Na}), 382$ (2), 364 (12), 346 (7).

Compound 31. Colorless crystals ($4 \mathrm{mg}, 80 \%$ yield). $[\alpha]_{D}^{20}=+95.5^{\circ}\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right)$. IR (ATR) 2929, 1678, 1227, $1091 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 0.93(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.01-2.02$ $(\mathrm{m}, 13 \mathrm{H}), 2.20-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.71(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{dd}, 1 \mathrm{H}, J=6.3,11.6$
 $\mathrm{Hz}), 3.51(\mathrm{dd}, 1 \mathrm{H}, J=8.8,11.6 \mathrm{~Hz}), 3.87(\mathrm{dd}, 1 \mathrm{H}, J=1.0,6.3 \mathrm{~Hz}), 4.00-4.07$ $(\mathrm{m}, 1 \mathrm{H}), 4.29(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 4.99(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz}), 5.34-5.41(\mathrm{~m}, 2 \mathrm{H}), 5.70$ (bs, $1 \mathrm{H}, \mathrm{NH}$) ${ }^{13}{ }^{13} \mathrm{C}$ NR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.0,26.3,28.3,28.4,28.9,30.1$, $31.2,31.6,31.8,34.5,34.6,61.3,61.9,68.8,97.5,128.1,135.3,171.2,174.1 ;$ MS (EI) m/z (rel. intensity): 281 (63), 263 (100), 245 (42), 227 (17), 195 (14), 161 (10). HRMS: $\left(\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{5} \mathrm{~S}_{1}, \mathrm{M}+\mathrm{Na}\right)$ calcd.:403.166415, found: 406.16692.

Compound 32. Colorless syrup ($5 \mathrm{mg}, 45 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 6.21(\mathrm{~m}, 1 \mathrm{H}), 5.79$ $(\mathrm{d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.24(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52$ (m, 1H), $3.44(\mathrm{dd}, J=11.5,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=11.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-$
 $2.32(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{dd}, \mathrm{J}=$ $15.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.34(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 174.6$ (C), 165.7 (C), $144.9(\mathrm{CH}), 129.9(\mathrm{CH}), 129.6$ (C), $121.7(\mathrm{CH}), 98.1(\mathrm{C}), 69.0(\mathrm{CH}), 62.5(\mathrm{CH}), 62.2(\mathrm{CH}), 35.3\left(\mathrm{CH}_{2}\right), 31.7$ $\left(\mathrm{CH}_{2}\right), 31.6\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 24.1\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{2}\right)$; HRMS (ESI +): calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NNaO}_{5} \mathrm{~S}_{1}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$: 390.1351; found 390.1352.

((4S)-4-[(1R,10S,13R,15R)-15-Hydroxy-10-methyl-3-oxo-2,14-dioxabicyclo[11.3.1]

 heptadeca-4,8-dien-15-yl]-1,3-oxazolidin-2-one (33). White solid ($8 \mathrm{mg}, 61 \%$). $[\alpha]_{D}^{20}=+89$ (c $0.04, \mathrm{CHCl}_{3}$); IR (ATR) $3564,3293,2922,2856,1752,1727,1459,1402,1360$, $1326,1225,1188,1176,1156,1111,1083,1064,1055,1026,1003,974,941$, 927, $911,890,875,855,838,795,768,750,723,672 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.77-0.84(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 1.06(\mathrm{dddd}, 1 \mathrm{H}, \mathrm{J}=14.2$, $10.5,4.0,4.0 \mathrm{~Hz}), 1.33-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=13.5$, $3.9 \mathrm{~Hz}), 1.81-1.91(\mathrm{~m}, 4 \mathrm{H}), 1.93(\mathrm{dd}, 1 \mathrm{H}, J=14.5,2.0 \mathrm{~Hz}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 2.34$
(ddd, $1 \mathrm{H}, ~ J=15.3,11.6,3.9 \mathrm{~Hz}), 2.60(\mathrm{ddd}, 1 \mathrm{H}, J=15.3,5.5,3.8 \mathrm{~Hz}), 2.64-2.72(\mathrm{~m}, 1 \mathrm{H}), 3.81$ (dd, $1 \mathrm{H}, \mathrm{J}=8.4,4.7 \mathrm{~Hz}), 4.02-4.07(\mathrm{~m} \mathrm{1H}), ~ 4.43-4.49(\mathrm{~m}, 2 \mathrm{H}), 4.99$ (app. t, $1 \mathrm{H}, J=10.8 \mathrm{~Hz}$), $5.36(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=11.3,4.5 \mathrm{~Hz}), 5.38-5.41(\mathrm{~m}, 1 \mathrm{H}), 5.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 22.3,26.4,28.41,28.42,30.1,31.1,31.6,32.3,34.5,34.6,59.2,61.7,65.7,68.8,96.6,128.0$, 135.4, 159.5, 171.2; MS (EI) m/z (rel. intensity): 367 (8), 349 (8), 281 (32), 263 (100), 245 (37), 221 (18), 195 (17), 137 (14), 95 (29), 81 (40), 67 (39), 55 (56); HRMS (ESI) m/z 390.1889 (M + $\mathrm{Na})^{+} ;$calcd. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{6}+\mathrm{Na}$: 390.1892 .

(4S)-4-[(1R,13R,15R)-15-Hydroxy-3-oxo-2,14-dioxabicyclo[11.3.1]heptadec-8-en-15-yl]-1,3-

 oxazolidin-2-one (34). Prepared analogously; prep-HPLC gave compound 34 as a colorless syrup ($8.8 \mathrm{mg}, 81 \%$) which turned out rather unstable in CDCl_{3} solution. $[\alpha]_{D}^{20}=+51(c$ $0.04, \mathrm{CHCl}_{3}$); IR (ATR) $3561,3289,2929,2858,1733,1715,1441,1407,1360$, 1327, 1245, 1222, 1176, 1144, 1103, 1077, 1055, 1037, 1022, 1000, 976, 914 , 873, 852, 794, 769, $727 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.27-1.33(\mathrm{~m}, 1 \mathrm{H})$, $1.35-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.94(\mathrm{~m}, 8 \mathrm{H}), 2.24-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.35$ (ddd, $1 \mathrm{H}, J=15.3,11.3,4.0 \mathrm{~Hz}), 2.42-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{ddd}, 1 \mathrm{H}, J=15.3,5.8$, $3.9 \mathrm{~Hz}), 3.81(\mathrm{dd}, 1 \mathrm{H}, J=7.5,5.6 \mathrm{~Hz}), 4.05-4.11(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{~d}, 1 \mathrm{H}, J=2.5$ $\mathrm{Hz}), 4.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.23(\mathrm{ddd}, 1 \mathrm{H}, J=11.3,11.3,4.0 \mathrm{~Hz}), 5.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.38-5.41(\mathrm{~m}, 1 \mathrm{H})$, 5.44-5.50 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.3,23.7,26.1,27.8,29.9,31.3,32.1,34.4$, $34.5,59.1,61.2,65.7,68.8,96.6,129.3,129.7,164.1,171.1$; MS (EI) m / z (rel. intensity): 353 (5), 335 (12), 317 (6), 267 (24), 251 (97), 249 (100), 231 (29), 207 (13), 181 (9), 135 (15); HRMS (ESI) $m / z 376.1740(\mathrm{M}+\mathrm{Na})^{+} ;$calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{6}+\mathrm{Na}: 376.1736$.

(+)-(R)-4-((1R,4Z,8Z,13R,15R)-15-Hydroxy-3-oxo-2,14-dioxa-

bicyclo[11.3.1]heptadeca-4,8-dien-15-yl)oxazolidin-2-one (35). $[\alpha]_{D}^{20}=+58.1$ (c $1.1, \mathrm{CHCl}_{3}$). IR (neat) $3337,2924,2858,1747,1706 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 6.28-6.20(\mathrm{~m}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J$ $=6.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.42-5.33(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.20(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.34-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{dd}, \mathrm{J}=9.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.79$ (ddd, $J=9.0,5.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-1.20(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR (100 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 165.9(\mathrm{C}), 159.7,145.6(\mathrm{CH}), 129.8(\mathrm{CH}), 129.8(\mathrm{CH}), 121.8(\mathrm{CH})$, $96.4(\mathrm{C}), 68.3(\mathrm{CH}), 66.1\left(\mathrm{CH}_{2}\right), 62.5(\mathrm{CH}), 60.6(\mathrm{CH}), 35.4\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 31.0$ $\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{2}\right), 24.2\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{2}\right)$.

Compound 13. Cerium ammonium nitrate ($26 \mathrm{mg}, 0.047 \mathrm{mmol}$) was added to a vigorously stirred suspension of cycloalkyne $12(10 \mathrm{mg}, 0.019 \mathrm{mmol})$ in acetonitrile/water ($2: 1,0.5 \mathrm{ml}$).

After 20 min the mixture became homogeneous and stirring was continued for additional 4 h . The solution was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated. Purification by flash chromatography (ethyl acetate/hexane, $1 / 2$) afforded derivative $\mathbf{1 3}$ as a pale yellow oil (5 mg , 80%). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{J}=1.2 \mathrm{~Hz}, \mathrm{H}-2), 5.68$ (s, 1H, -NH), 5.35 (quint., 1H, $J=2.9 \mathrm{~Hz}, \mathrm{H}-13$), 4.71 (ddt, $1 \mathrm{H}, \mathrm{J}=$ $11.6,6.8,1.8 \mathrm{~Hz}, \mathrm{H}-11), 3.80(\mathrm{ddd}, 1 \mathrm{H}, J=9.0,6.1,1.1 \mathrm{~Hz}, \mathrm{H}-16), 3.79$ (s, 1H, -OH), 3.47 (dd, 1H, J = 11.7, 8.9 Hz, H-17a), 3.39 (dd, 1H, J = 11.7, $6.0 \mathrm{~Hz}, \mathrm{H}-17 \mathrm{~b}$), 2.90 (ddd, $1 \mathrm{H}, \mathrm{J}=12.7,8.5,8.0 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}$), 2.59 (dddd, $1 \mathrm{H}, J=12.6,7.3,5.1,1.0 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{~b}), 2.45$ (m, $1 \mathrm{H}, \mathrm{H}-8$), 2.33-2.37 (m, 2H, H-5), 2.30 (ddt, 1H, $J=14.2,3.1,1.8 \mathrm{~Hz}, \mathrm{H}-12 \mathrm{a}$), 2.10 (ddd, 1H, J $=14.7,2.8,2.0 \mathrm{~Hz}, \mathrm{H}-14 \mathrm{a}), 1.95(\mathrm{dd}, 1 \mathrm{H}, J=14.7,3.5 \mathrm{~Hz}, \mathrm{H}-14 \mathrm{~b}), 1.87(\mathrm{~d}, 3 \mathrm{H}, J=1.4 \mathrm{~Hz}, \mathrm{H}-$ 19), 1.44-1.67 (m, 4H, H-9, H-10), 1.37 (ddd, 1H, $J=14.3,11.7,2.6 \mathrm{~Hz}, \mathrm{H}-12 \mathrm{~b}$), 1.14 (d, 3H, J $=7.0 \mathrm{~Hz}, \mathrm{H}-20) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.7$ ($\mathrm{s}, \mathrm{C}-18$), 165.3 ($\mathrm{s}, \mathrm{C}-1$), 156.1 ($\mathrm{s}, \mathrm{C}-3$), 118.2 (d, C-2), 97.7 ($\mathrm{s}, \mathrm{C}-15$), 86.3 ($\mathrm{s}, \mathrm{C}-7$), 79.6 ($\mathrm{s}, \mathrm{C}-6$), 68.8, d, C-13), 63.9 (d, C-11), 61.6 (d, C-16), 34.1 (t, C-10), 33.4 (t, C-12), 32.7 (t, C-4), 31.4 (t, C-14), 31.3 (t, C-9), 28.8 (t, C-17), 25.6 (d, C-8), 24.2 (q, C-19), 22.7 (q, C-20), 18.3 (t, C-5).

1. Fürstner, A., De Souza, D., Parra-Rapado, L. \& Jensen, J. T. (2003) Angew. Chem. Int. Ed. 42, 5358-5360.
2. Fürstner, A. \& Turet, L., Angew. Chem. Int. Ed., in press.
3. Ma, S., Lu, X. \& Li, Z. J. (1992) Org. Chem. 57, 709.
4. Sibi, M. P., Rutherford, D., Renhowe, P. A. \& Li, B. (1999) J. Am. Chem. Soc. 121, 7509.
5. Davison, E. C., Fox, M. E., Holmes, A. B., Roughley, S. D., Smith, C. J., Williams, G. M., Davies, J. E., Raithby, P. R., Adams, J. P., Forbes, I. T., et al. (2002) J. Chem. Soc. Perkin Trans. 11494.
6. Racherla, U. S., Liao, Y. \& Brown, H. C. (1992) J. Org. Chem. 57, 6614-6617.
7. Brown, H. C. \& Jadhav, P. K. (1983) J. Am. Chem. Soc. 105, 2092-2093.
8. Fürstner, A., Mathes, C. \& Lehmann, C. W. (2001) Chem. Eur. J. 7, 5299-5317.
9. Hoye, T. R., Ayyad, S.-E. N., Eklov, B. M., Hashish, N. E., Shier, W. T., El Sayed, K. A. \& Hamann, M. T. (2002) J. Am. Chem. Soc. 124, 7405-7410.
